
CSE421: Design and Analysis of Algorithms May 8, 2020

Lecturer: Shayan Oveis Gharan Lecture 17 Approximation Algorithms for Set Cover

1 Set Cover

We now design an approximation algorithm for the set cover problem.
Recall [n] = {1, . . . , n}. You are given a collection of sets S1, . . . , Sm ⊆ [n], such that ∪iSi = [n].

The goal is to find the smallest subcollection that includes all the elements. The set cover problem is
a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting
edges.

The problem has many applications in practice. For example, think of the a startup who needs
a number skills including marketing, software developing, accounting, data science, design, UI, etc.
Each applicant may have a number of these skills. The startup wants to hire a minimum number
of these applicants to include all the crtitical skills that it needs. There is also a natural weighted
variant of the problem where each set has a weight and we want to choose a subcollection of the
sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most lnn.

Input: A collection of sets S1, . . . , Sm ⊆ [n], such that ∪iSi = [n]
Result: A small collection of sets whose union covers [n].
Let T = ∅;
while ∪i∈TSi ∕= [n] do

If Sj maximizes Sj ∩ ([n]− ∪i∈TSi), add j to T ;
end
Output T .

Algorithm 1: Greedy Set Cover algorithm

Claim 1. If the smallest cover has k sets, then the algorithm finds a cover with at most k lnn sets.

Proof Suppose the OPT has k sets. Consider an iteration i of the while loop. LetR = [n]−∪i∈TSi

be the set of remaining elements. Note that R ⊆ [n]. Since OPT covers [n] it also covers R with
k sets. Therefore, there must be a set in OPT that covers at least 1/k fraction of elements of R.
Since Greedy chooses the set that covers the largest fraction of elements of R, the set that Greedy
chooses also covers at least 1/k fraction of elements of R.

Now, let us calculate how the number of remaining elements changes over the iterations of the
algorithm. At the beginning we have n. After 1 iteration (at least) n/k elements are covered so we

have at most n(1− 1/k) elements. In the second iteration (at least) n(1−1/k)
k elements are covered

so we will have (at most)

n(1− 1/k)− n(1− 1/k)

k
= n(1− 1/k)(1− 1/k) = n(1− 1/k)2.

17 Approximation Algorithms for Set Cover-1

Similarly, after the i-th iteration of the while loop at most n(1 − 1/k)i elements are remained.
Observe that we will definitely stop (and cover everything) when n(1 − 1/k)i < 1 or equivalently,
when (1− 1/k)i < 1/n.

So, the question is how large i should be such that (1− 1/k)i < 1/n. Here we use the following
inequality without proof: For all x ≥ 0,

1− x ≤ e−x.

This can be proven by writing down the taylor series expansion of the exponential function. It
follows that

(1− 1/k)i ≤ e−i/k.

So, for i = k lnn we have
(1− /k)i ≤ e−k lnn/k = e− lnn = 1/n

as desired.

The above analysis for the algorithm is in fact tight. To see this, suppose the n elements
are party of k disjoint sets S1, . . . , Sk, where the i’th set has exactly 2i elements. Thus n =
2 + 4 + . . . + 2k = 2k+1 − 2. Now add two more sets A,B which are disjoint. A contains half of
the elements of every Si, and B contains the other half. So |A| = |B| = 2k − 1. The algorithm will
pick the k sets S1, . . . , Sk as the set cover, even though A,B are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible
to break the Θ(log n) approximation ratio assuming NP ∕= P.

17 Approximation Algorithms for Set Cover-2

