
CSE421: Design and Analysis of Algorithms May 17, 2021

Lecture 21 Longest Path in DAG, Longest Inc Subseq

Lecturer: Shayan Oveis Gharan Scribe:

1 Longest Path in a DAG

Given a DAG G consider the topological order where the vertices are labelled 1, 2, . . . , n such that
for any directed edge i → j we have i < j.

Now for 1 ≤ j ≤ n, define OPT (j) :=length (i.e., the number of edges) of the longest path
ending at j.

Base Case: For any vertex j with indeg(j) = 0 we have OPT (j) = 0 Because no path ends
at j. So, OPT (1) = 0 as well.

IH: Suppose we have computed OPT (i) for all i < j for some j ≥ 2.
IS: We want tot find OPT (j). We guess that the last node prior to j in the longest path ending

at j is i. Then, we have

• i → j must be an incoming edge of j.

• i < j by the topological sorting

• Since i < j, by IH, OPT (i) is already computed.

So, the longest path ending at j must be the longest path ending at i together with the edge i → j.
This means that

OPT (j) = OPT (i) + 1.

Now, we need to consider all possibilities for the guessed vertex i. All we need to do is to check
over all in-comming edges of j and take the one with the largest OPT .

OPT (j) = max
i:i→j

OPT (i) + 1.

This completes the proof of induction. The algorithm simply runs in time O(|V |+ |E| assuming
that for every vertex we have stored all of its incoming edges in an adjacency list; note that the
time process j is simply the indegree of j.

Once we compute OPT (j) for all j we can simply output, max1≤j≤nOPT (j); this is because
the longest path in G must end at one of the vertices 1, 2, . . . , n.

2 Longest Increasing subseqence

Say x1, . . . , xn is the input sequence. Define OPT (j) = the length (number of integers) of the
longest increasing subsequence that ends at j.

Base Case: Obviously OPT (1) = 1; similarly for any j where xj < xi for all i < j we have
OPT (j) = 1¿

IH: Suppose we have computed OPT (i) for all i < j for some j ≥ 2.
IS: We need to find OPT (j). Similar to the previous problem, we guess i is the number right

before j in the longest increasing subsequence that ends at j. Then, we must have

21 Longest Path in DAG, Longest Inc Subseq-1

• i < j and xi < xj by definition of increasing subsequence.

• Since i < j, OPT (i) is already computed by IH

• The longest increasing subsequence ending at j is simply the one ending at i together with
the number j.

So, we get OPT (j) = OPT (i) + 1¿ Now, considering all possibilities for i we get

OPT (j) = max
i:i<j,xi<xj

1 +OPT (i).

This completes the proof.
The algorithm we just explained runs inO(n2). Because it takesO(j) operations to findOPT (j);

taking the sum 1+ · · ·+n, it runs in O(n2). The final output of the algorithm is max1≤j≤nOPT (j).
Lastly, this problem can be solved by reducing it to the Longest path in a DAG problem; all

we need to do is to construct a DAG from the given sequence of numbers. We put a vertex i for
the number xi. We add the directed edge i → j iff i < j and xi < xj . Now, it can be seen that
any increasing subsequence with l numbers correspond to a path in the DAG with l − 1 edges.
Similarly, any path in the DAG with l edges correspond to an increasing subsequence with l + 1
numbers. So, we can just find the longest path in this DAG return the output plus one.

21 Longest Path in DAG, Longest Inc Subseq-2

