CSE 421: Introduction to Algorithms

DFS - DAGs
Shayan Oveis Gharan

HW1 Grade

Q: I received low grade in HW1 what should I do?

- Understand what was your mistake. Did you understand the problem statement correctly?
- Show up to office hours and ask for hints or to explain your solution
- Review materials of 311 on proofs/induction
- Do exercises from the book

Q: My HW1 grade is low, will I be able to receive 4.0?

- Yes, I usually look at your progress. Many students are behind at beginning but by practice they catch up and receive 4.0
Q: I have filled out a regrade request, but was not convinced, what should I do?
- Show up to my office hour and discuss your solution

Depth First Search

Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack

DFS(s) - Recursive version

Global Initialization: mark all vertices undiscovered
DFS(v)
Mark v discovered
for each edge $\{v, x\}$ if (x is undiscovered)

Mark x discovered
DFS(x)
Mark v full-discovered

DFS(A)

Color code:

undiscovered
discovered fully-explored

Suppose edge lists at each vertex are sorted alphabetically

A, 1

Call Stack
(Edge list):
A (B, J)

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B (A,C,J)

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$ C (B,D,G,H)

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D (C,E,F)

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, Z, F, F)$
E (D,F)
st[]$=$
$\{1,2,3,4,5\}$

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, \mathcal{Z}, \mathrm{F})$
E ($D, \not \subset)$
F (D,E,G)

D,4 F,6
I
M

$$
\begin{aligned}
& \mathrm{st}[]= \\
& \{1,2,3,4,5, \\
& 6\}
\end{aligned}
$$

E,5

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, \mathcal{Z}, \mathrm{F})$
E ((\mathbb{F}, \bar{F})
F (D, z, Ga) G (C,F)

D,4)-n-F,6
I

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, \mathcal{Z}, \mathrm{F})$
E ((\mathbb{F}, \bar{F})
F (D, z, Ga) G ($(, \nabla)$

D,4)-.....F,6
I

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, \mathcal{Z}, \mathrm{F})$
E (D, Z $)$
F (D, Z, Ca $)$

D,4)-". F,6
I
M

$$
\begin{aligned}
& s t[]= \\
& \{1,2,3,4,5, \\
& 6\}
\end{aligned}
$$

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(, Z, F, F)$
$E(\nabla, F)$

I
M
st[] $=$
\{1,2,3,4,5\}

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
C ((B, D, G, G, H)
D ($(\mathbb{Z}, \mathbb{Z}, \boldsymbol{F})$

D,4)....F,6
I
M

$$
\begin{aligned}
& \text { st[] }= \\
& \{1,2,3,4\}
\end{aligned}
$$

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$ C ($\left.B^{\prime}, D^{\prime}, G, H\right)$

$$
\begin{aligned}
& \mathrm{st}[]= \\
& \quad\{1,2,3\}
\end{aligned}
$$

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$
$C\left(B, D, \not \subset, \mathscr{C}^{\prime}\right)$
H (C,I,J)

st[]$=$
\{1,2,3,8\}

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$
$C(B, D, \not \subset, G)$
H (\varnothing, Y, J)
I (H)

I,9

$$
\begin{aligned}
& s t[]= \\
& \{1,2,3,8,9\}
\end{aligned}
$$

DFS(A)

Color code:

undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$
$C(B, D, \not \subset, G)$
H ($\varnothing, Y, \mathrm{~J})$

I,9

E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)

$\mathrm{H}(\varnothing, Y, \bar{b})$
$J(A, B, H, K, L)$

I,9

$$
\begin{aligned}
& s t[]= \\
& \{1,2,3,8, \\
& 10\}
\end{aligned}
$$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)
C ($(B, D, \not, Q, \not \subset)$
$\mathrm{H}(\varnothing, Y, \phi)$
$J(A, B, H, K, K, L)$
K (J,L)

D,4)-....F,6
I,9

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)

$\mathrm{H}(\varnothing, Y, \phi)$
$J(A, B, B, H, K, L)$

L (J,K,M)
st[]$=$
\{1,2,3,8,10
,11,12\}

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \mathbf{C}, \mathrm{J}$)
$C\left(B, D, C_{A}, V^{\prime}\right)$
$\mathrm{H}(\varnothing, Y, \overline{,})$
$J(A, B, B, \not, K, K, L)$
K (y,L)
L ($\mathrm{L}, \mathrm{K}, \mathrm{M}, \mathrm{Y})$
M(L)

D,4)......F,6
I,9

$$
\begin{aligned}
& \text { st[] }= \\
& \{1,2,3,8,10 \\
& , 11,12,13\}
\end{aligned}
$$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)

$\mathrm{H}(\varnothing, Y, \phi)$
$J(A, B, \not, H, K, L)$
K (y, L, $)$
$L(\mathbb{D}, \mathrm{~K}, \mathrm{M}, \mathrm{M})$
D,4-.....F,6
I,9

$$
\begin{aligned}
& \mathrm{st}[]= \\
& \{1,2,3,8,10 \\
& , 11,12\}
\end{aligned}
$$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)

$\mathrm{H}(\varnothing, Y, \overline{,})$
$J(A, B, B, \not, K, K, L)$ K (y, L,

B,2 - $-\cdots=(J, 10$

H,8
$\mathrm{K}, 11 \mathrm{~L}, 12$
st[]$=$
$\{1,2,3,8,10$
$, 11\}$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$

$\mathrm{H}(\varnothing, Y, \overline{,})$
$J(A, B, B, H, K, L)$

D,4 - $\cdot \ldots=-6$
B,2 - $-\cdots=(J, 10$

H,8
$\mathrm{M}, 11 \mathrm{~L}, 12$

$$
\begin{aligned}
& s t[]= \\
& \{1,2,3,8, \\
& 10\}
\end{aligned}
$$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J}$)
C ($(B, D, \not, Q, \not \subset)$
$\mathrm{H}(\varnothing, Y, \phi)$
$J(A, B, H, K, K)$

D,4).....F,6
B,2 - $-\cdots=(J, 10$

H,8
M, L, 12

$$
\begin{aligned}
& s t[]= \\
& \{1,2,3,8, \\
& 10\}
\end{aligned}
$$

E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J}$)

$\mathrm{H}(\boldsymbol{Z}, \bar{y}, \boldsymbol{,}$,

D,4-....F,6
B,2 - $-\cdots \cdots \cdot(J, 10$
st[] =
\{1,2,3,8\}
E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{C}, \mathrm{J})$

D,4-....F,6
B,2 - $\cdots \cdots=(J, 10$
\because

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack:
(Edge list)
$\mathrm{A}(B, \mathrm{~J})$
$\mathrm{B}(\mathcal{A}, \mathscr{C}, \mathrm{J})$

D,4) $\cdots \cdots, F$
B,2 - $-\cdots \cdots(10$
(M,13

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbf{Q}, \boldsymbol{y})$

B,2

G,7
H,8

st[]$=$
$\{1,2\}$
E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)

I,9

E,5

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack:
(Edge list)
$A(B, B)$

I,9
$s t[]=$
$\{1\}$
E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
TA-DA!!

I,9
(M,13)
$s t[]=\{ \}$

E,5

DFS(A)

Edge code:
Tree edge Back edge

DFS(A)

Edge code:
Tree edge

Properties of (undirected) DFS

Like BFS(s):

- DFS(s) visits x iff there is a path in G from s to x So, we can use DFS to find connected components
- Edges into then-undiscovered vertices define a tree the "depth first spanning tree" of G

Unlike the BFS tree:

- The DFS spanning tree isn't minimum depth
- Its levels don't reflect min distance from the root
- Non-tree edges never join vertices on the same or adjacent levels

Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its descendants/ancestors in the DFS tree

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ancestor

Non-Tree Edges in DFS

Obs: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree

Lemma: For every edge $\{x, y\}$, if $\{x, y\}$ is not in DFS tree, then one of x or y is an ancestor of the other in the tree.

Proof:

One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)

Since $\{x, y\}$ is not in DFS tree, y was fully-explored when the edge $\{x, y\}$ was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a descendant of x.

DAGs and Topological Ordering

Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Def: A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ so that for every edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ we have $\mathrm{i}<\mathrm{j}$.

a DAG

a topological ordering of that DAGall edges left-to-right

DAGs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.
Pf. (by contradiction)
Suppose that G has a topological order $1,2, \ldots, n$ and that G also has a directed cycle C.
Let i be the lowest-indexed node in C , and let j be the node just before i; thus (j, i) is an (directed) edge.
By our choice of i, we have $i<j$.
On the other hand, since (j, i) is an edge and $1, \ldots, n$ is a topological order, we must have $j<i$, a contradiction the directed cycle C

DAGs: A Sufficient Condition

Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk backward to x .

Is this similar to a
Repeat until we visit a node, say w, twice. previous proof?
Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order
Pf. (by induction on n)
Base case: true if $\mathrm{n}=1$.
IH : Every DAG with $\mathrm{n}-1$ vertices has a topological ordering.
IS: Given DAG with $n>1$ nodes, find a source node v .
$G-\{v\}$ is a DAG, since deleting v cannot create cycles.
Reminder: Always remove vertices/edges to use IH

By IH, $G-\{v\}$ has a topological ordering.
Place v first in topological ordering; then append nodes of $G-\{v\}$ in topological order. This is valid since v has no incoming edges.

A Characterization of DAGs

G has a
topological order

Topological Order Algorithm: Example

Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Sorting Algorithm

Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges
Initialization:
count[w] = 0 for all w
count[w]++ for all edges $(v, w) \quad O(m+n)$
$S=S \cup\{w\}$ for all w with count $[w]=0$
Main loop:
while S not empty

- remove some v from S
- make v next in topo order
- for all edges from v to some w
-decrement count[w]
-add w to S if count[w] hits 0
Correctness: clear, I hope
Time: $\mathrm{O}(\mathrm{m}+\mathrm{n})$ (assuming edge-list representation of graph)

DFS on Directed Graphs

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Summary

- Graphs: abstract relationships among pairs of objects
- Terminology: node/vertex/vertices, edges, paths, multiedges, self-loops, connected
- Representation: Adjacency list, adjacency matrix
- Nodes vs Edges: $\mathrm{m}=\mathrm{O}\left(\mathrm{n}^{2}\right)$, often less
- BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer
- DFS: recursion/stack; all edges ancestor/descendant
- Algorithms: Connected Comp, bipartiteness, topological sort

Greedy Algorithms

Coin Changing Problem Greedy Algorithm

Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100, give change to customer using fewest number of coins.

Ex: 34申.

Cashier's algorithm: At each iteration, give the largest coin valued \leq the amount to be paid.

Ex: \$2.89.

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140ф.
Greedy: 100, 34, 1, 1, 1, 1, 1, 1. Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most attractive choice at the moment. But this may lead to a deadend later.

Greedy Algorithms Outline

Pros

- Intuitive
- Often simple to design (and to implement)
- Often fast

Cons

- Often incorrect!

Proof techniques:

- Stay ahead
- Structural
- Exchange arguments

