CSE 421: Introduction
to Algorithms

Bipartiteness - DFS

Shayan Oveis Gharan

Bipartite Graphs

Definition: An undirected graph G=(V,E) is bipartite
if you can partition the node set into 2 parts (say, blue/red
or left/right) so that

all edges join nodes in different parts
l.e., no edge has both ends in the same part.

Application:
« Scheduling: machine=red, jobs=blue
« Stable Matching: men=blue, wom=red

a bipartite graph

Testing Bipartiteness

Problem: Given a graph G, is it bipartite?

a bipartite graph G

Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

Many graph problems become:
« Easier if the underlying graph is bipartite (matching)
« Tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

Lemma: If G is bipartite, then it does not contain an odd
length cycle.

Pf. We cannot 2-color an odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Case (ii)

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
blue = nodes on odd levels,
red = nodes on even levels.

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (X, y) is an edge & X, y in same level L;.

Let z = their lowest common ancestor in BFS tree. z =lca(x, y)

Let L; be level containing z.

Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.

Its lengthis 1 + (j-i) + (j-i), whichis odd. ‘el

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length
cycles.

bipartite not bipartite
(2-colorable) (not 2-colorable)

In class Exercise

Let G be a graph with n vertices and at least n edges.
Show that G has a cycle.

10

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack

11

DFS(s) — Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v,x}
if (x is undiscovered)
Mark x discovered
DFS(x)

Mark v full-discovered

12

Color code:

D F S (A) undiscovered

discovered
@ fully-explored
Suppose edge lists \ ,

~~~~~ Call Stack

at each vertex =t 0000 - <
aresoted [ B }reene, @ (Edge list):
alphabeticall

" ! i i " A (B,J)

.
‘e,
IS
*
L

-0 0 O

{1




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
ST A (BJ)

B (A,C,J)

{1,2}

*
*
*
*
0‘ o



Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
-l A (BJ)

B (X£.J)
C (B,D,G,H)

{1,2,3}

*
*
*
*
0‘ o



Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BJ)
B (#,2.J)
.':. é “" C (H’w ,G,H)
© @ @ (f)

OSONORNON"

{1,2,3,4}

16




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BJ)
B (#,2.J)
C(B,G,H)
D (Z,E.F)
© OO ™

S ONONNON:

{1,2,3,4,5}

17




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
K . B,J)

62 O O «

{1 72,3,415,
6}

18




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S, A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

: Py, . " s
' F(B.E2Z)
; : G (C,F)

) O O

{1 72,3,415,
6,7}

19




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

- . K : - - (ﬁy)
@ F (D 2)
. < a@p

) O O

{1 72,3,415,
6,7}

20




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (BY)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

LS 3 - ) E (gy)
' F(P,E.2)

) O O

{1 72,3,415,
6}

21




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (BJ)
.: E "¢ B(%Qﬂj)
C (BP,G,H)

D(Z.E.F)

L4 *
L4 [ ] *
4 [ ] “
L4 » .
N - *
L4 L *
Q . %
| | ) [
L4
Y E (E 'y)
[N ]
L [ ]

) O O

{1,2,3,4,5}

22




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST, A (BJ)
B (#,2.J)
:': é ‘\‘ C (B’W’GaH)
| : : D (Z.EF)

ORONONNON::

{1,2,3,4}

23




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
-l A (BJ)

B (X¢.J)
C(B.R.G.H)

ORONONNON::

{1,2,3}

24




Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
S A (BY)
B (#,2.))
C (B.J2.@.H)
: H(C,l,J)

@ Stf] =

{1,2,3,8}

25




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
: B,

(B,
(9(57)

(B, 2. 1)
(&)
(H)

—ITOW>

@ st] =

{1,2,3,8,9}

26




Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
o~ (B)

@ Stf] =

{1,2,3,8}

27




..
IS
e
.

Color code:

undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

28




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(BJ)

(@)
(BP.G.H)
H(Z.//)

O w>

{1,2,3,8,10
11}

29




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

Wy

st[] =
{1,2,3,8,10
11,12}

30




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)
K (JAY

L (S
M(L)

st[] =
{1,2,3,8,10
,11,12,13}

31




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)
K (JAY
L (KM

st[] =
{1,2,3,8,10
11,12}

32




Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(BJ)
(

X @)
(B12.G. 1)
H(Z )4

J (XBHKL)
K (LY

O >

st[] =
{1,2,3,8,10
11}

33




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIKL)

st] =
{1,2,3,8,
10}

34




Color code:

undiscovered

discovered

@ fully-explored

Call Stack:
(Edge list)

J (MBIK )

st] =
{1,2,3,8,
10}

35




Color code:

D F S (A) undiscovered

discovered
@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
A (BY)
@ B (X,2.J)
C (B1,@.H)
: g H (Z.)/)

{1,2,3,8}




Color code:

D F S ( A) undiscovered

discovered
@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
A (BY)
@ B (X,0.J)
", CEBEH)

----- ONOEEN TR~

{1,2,3}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
* A (BJ)

(c3, B (KG)

----- ONOEEN TR~

{1,2}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored
‘e, Call Stack:
@ @ (Edge list)
* A (BJ)

©

----- ONOEEN TR~

{1,2}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L
L 4
.
2

E A (BJ)

{1}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L
L 4
.
2

! E A BY)

{1}




Color code:

D F S ( A) undiscovered

discovered

@ fully-explored

‘e, Call Stack:

@ (Edge list)

L 4
.
2

B ., TA-DA!!

@ ‘

.

.

. .
@ ..... @ @

st] = {}




Edge code:
Tree edge
Back edge

43



Tree edge

Backedge =ss::-

No Cross Edges!
K

Edge code:

|
00
*
*
*
00 @
@0 m
@ EEEEEEEEEEEEEEEEEEEEEEEEEEEESR @

DFS(A)



