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Bipartite Graphs

Definition: An undirected graph G=(V,E) is bipartite
if you can partition the node set into 2 parts (say, blue/red
or left/right) so that

all edges join nodes in different parts
l.e., no edge has both ends in the same part.

Application:
« Scheduling: machine=red, jobs=blue
« Stable Matching: men=blue, wom=red

a bipartite graph



Testing Bipartiteness

Problem: Given a graph G, is it bipartite?

a bipartite graph G



Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

Many graph problems become:
« Easier if the underlying graph is bipartite (matching)
« Tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

a bipartite graph G another drawing of G



An Obstruction to Bipartiteness

Lemma: If G is bipartite, then it does not contain an odd
length cycle.

Pf. We cannot 2-color an odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)



A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Case (ii)



A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
blue = nodes on odd levels,
red = nodes on even levels.




A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (X, y) is an edge & X, y in same level L;.

Let z = their lowest common ancestor in BFS tree. z =lca(x, y)

Let L; be level containing z.

Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.

Its lengthis 1 + (j-i) + (j-i), whichis odd. ‘el



Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length
cycles.

bipartite not bipartite
(2-colorable) (not 2-colorable)



In class Exercise

Let G be a graph with n vertices and at least n edges.
Show that G has a cycle.
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Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack
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DFS(s) — Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v,x}
if (x is undiscovered)
Mark x discovered
DFS(x)

Mark v full-discovered
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Edge code:
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Tree edge
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