# CSE 421: Introduction to Algorithms

**BFS** 

Shayan Oveis Gharan

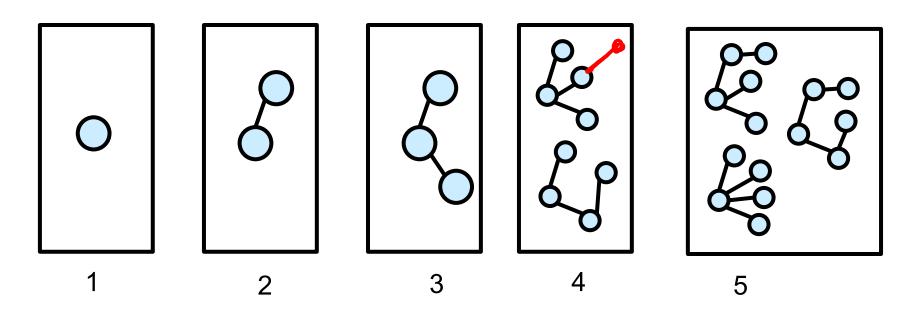
### Induction

#### Induction in 311:

Prove  $1 + 2 + \dots + n = n(n+1)/2$ 

Induction in 421:

Prove all trees with n vertices have n-1 edges



# #edges

Let G = (V, E) be a graph with n = |V| vertices and m = |E| edges.

Claim: 
$$0 \le m \le \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$

Pf: Since every edge connects two distinct vertices (i.e., G has no loops)

and no two edges connect the same pair of vertices (i.e., G has no multi-edges)

It has at most  $\binom{n}{2}$  edges.

# Sparse Graphs

A graph is called sparse if  $m \ll n^2$  and it is called dense otherwise.

Sparse graphs are very common in practice

- Friendships in social network
- Planar graphs
- Web braph

Q: Which is a better running time O(n+m) vs  $O(n^2)$ ?

A:  $O(n+m) = O(n^2)$ , but O(n+m) is usually much better.

# Storing Graphs (Internally in ALG)

Vertex set  $V = \{v_1, \dots, v_n\}$ .

#### Adjacency Matrix: A

- For all, i, j, A[i, j] = 1 iff  $(v_i, v_j) \in E$
- Storage:  $n^2$  bits

|    | 2 |
|----|---|
| P( |   |
| (  | 3 |

|     | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| 1   | 0 | 0 | 0 | 1 |
| 2 3 | 0 | 0 | 1 | 1 |
| 3   | 0 | 1 | 0 | 1 |
| 4   | 1 | 1 | 1 | 0 |

#### Advantage:

O(1) test for presence or absence of edges¹

#### Disadvantage:

 Inefficient for sparse graphs both in storage and edgeaccess

# Storing Graphs (Internally in ALG)

#### **Adjacency List:**

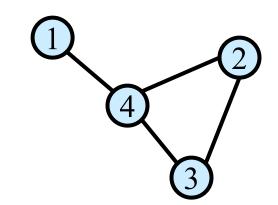
O(n+m) words

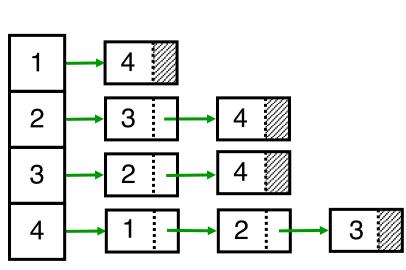
#### Advantage

- Compact for sparse
- Easily see all edges

#### Disadvantage

- No O(1) edge test
- More complex data structure





# Storing Graphs (Internally in ALG)

#### **Adjacency List:**

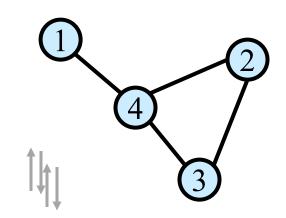
O(n+m) words

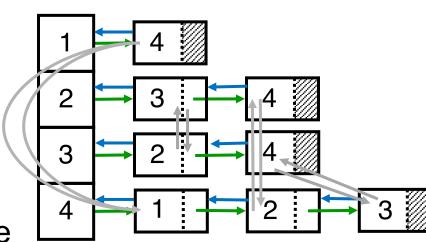
#### Advantage

- Compact for sparse
- Easily see all edges

#### Disadvantage

- No O(1) edge test
- More complex data structure





# **Graph Traversal**

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze; many efficient algs build on it.

#### Applications:

- Finding Connected components of a graph
- Testing Bipartiteness
- Finding Aritculation points

# Breadth First Search (BFS)

Completely explore the vertices in order of their distance from *s*.

#### Three states of vertices:

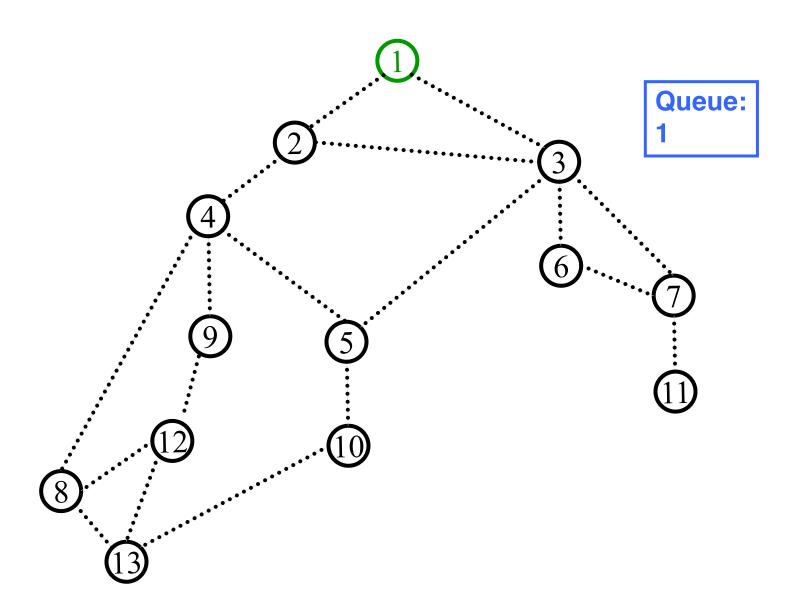
- Undiscovered
- Discovered
- Fully-explored

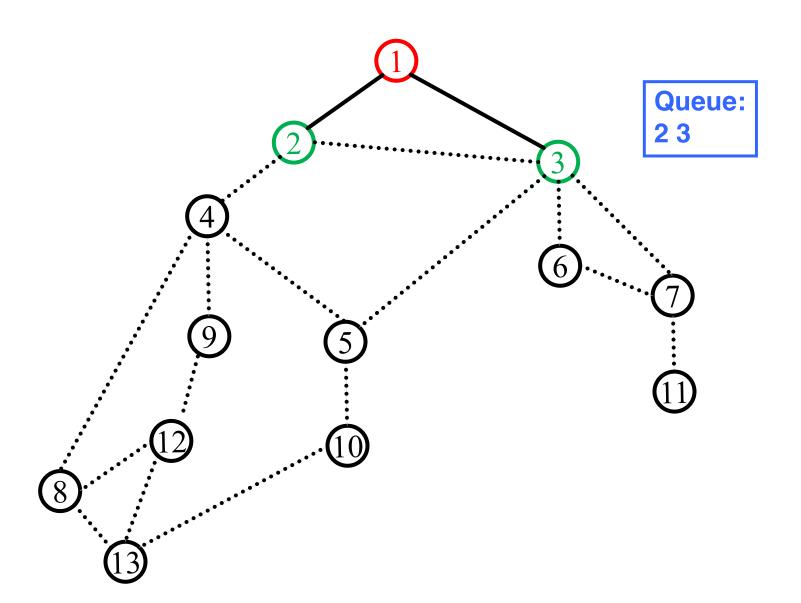
Naturally implemented using a queue
The queue will always have the list of Discovered vertices

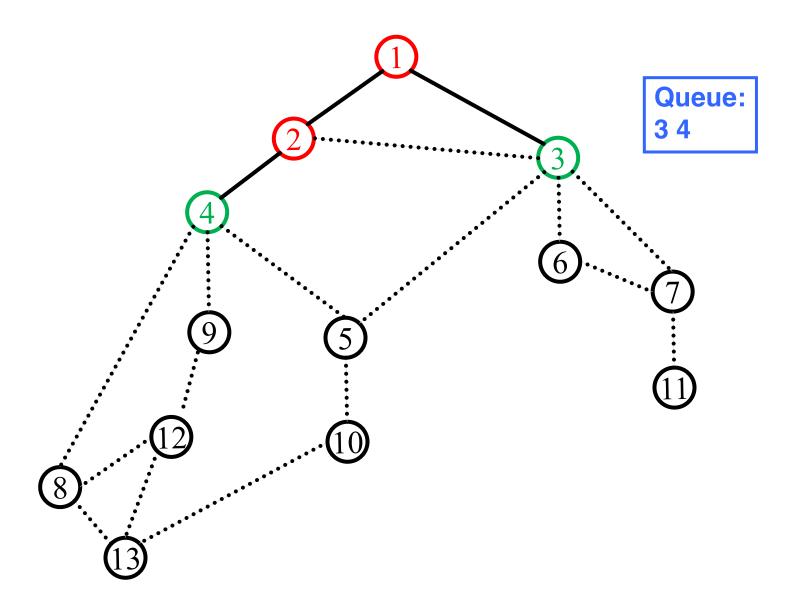
# BFS implementation

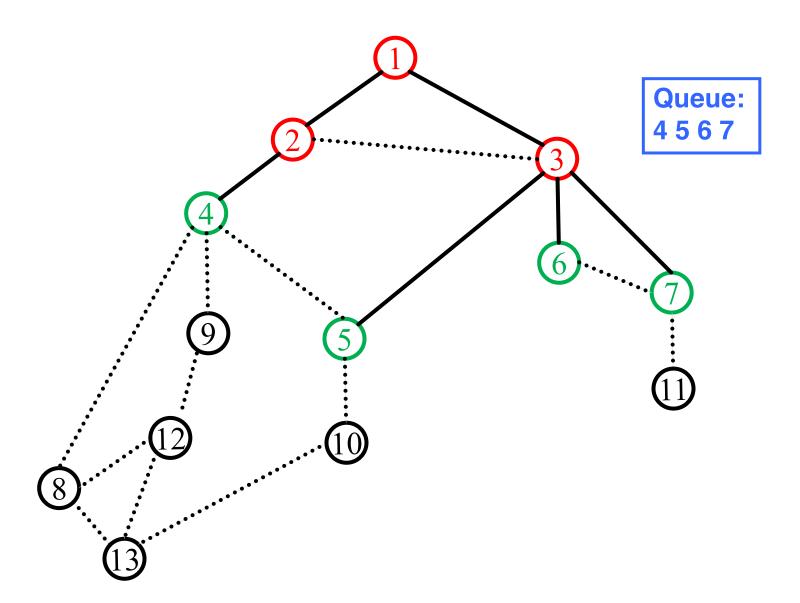
Global initialization: mark all vertices "undiscovered"

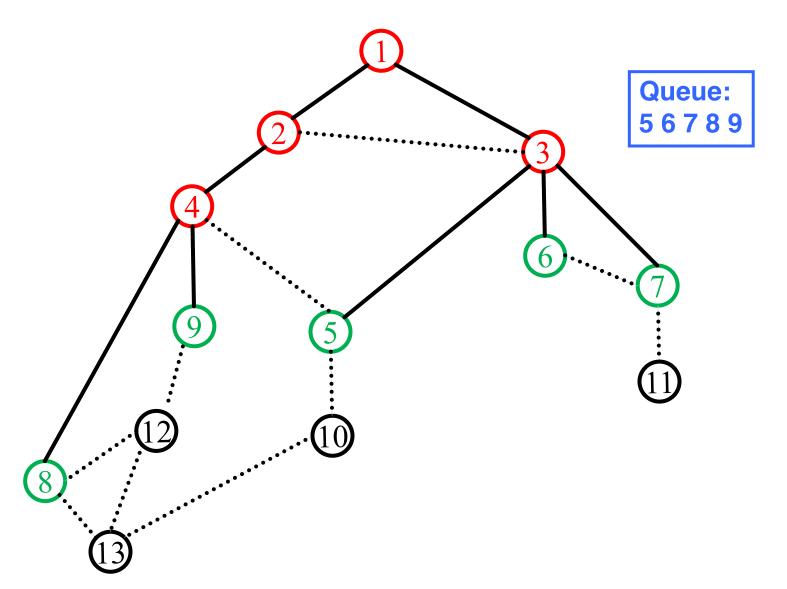
```
BFS(s)
   mark s "discovered"
   queue = \{s\}
   while queue not empty
      u = remove first(queue)
      for each edge {u,x}
          if (x is undiscovered)
             mark x discovered
             append x on queue
      mark u fully-explored
```

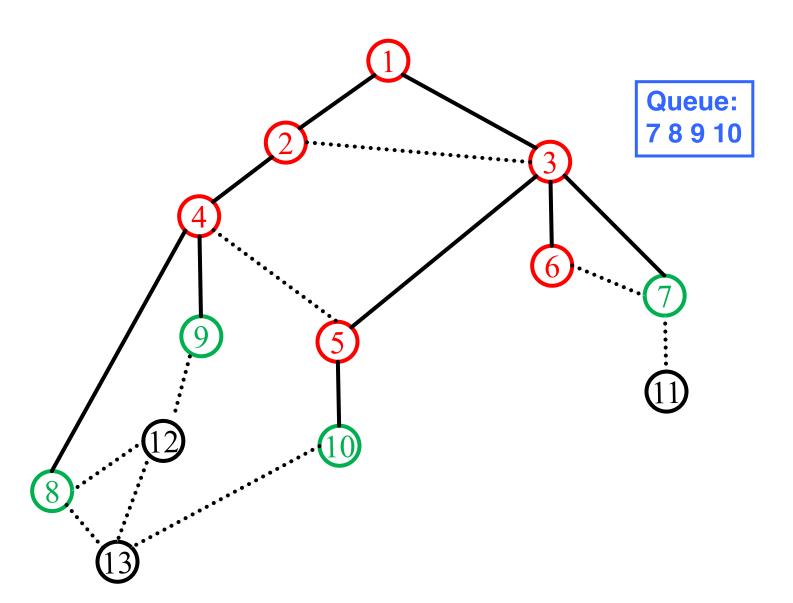


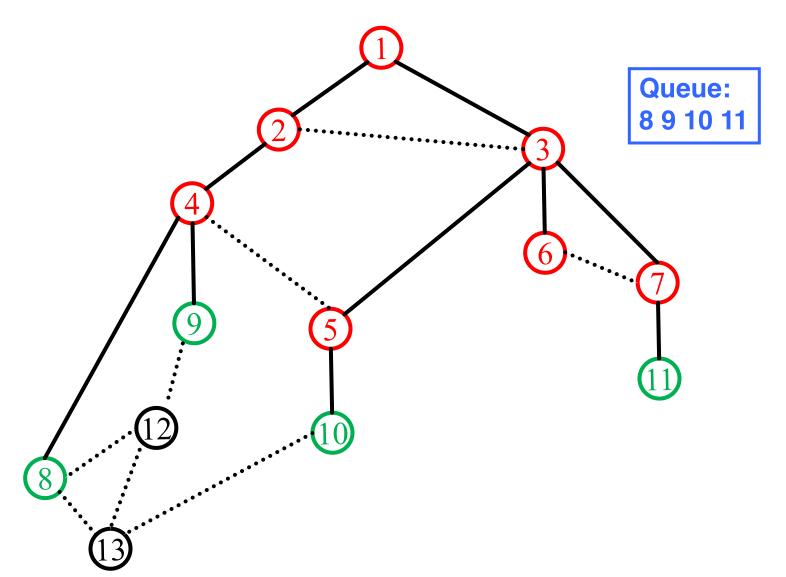


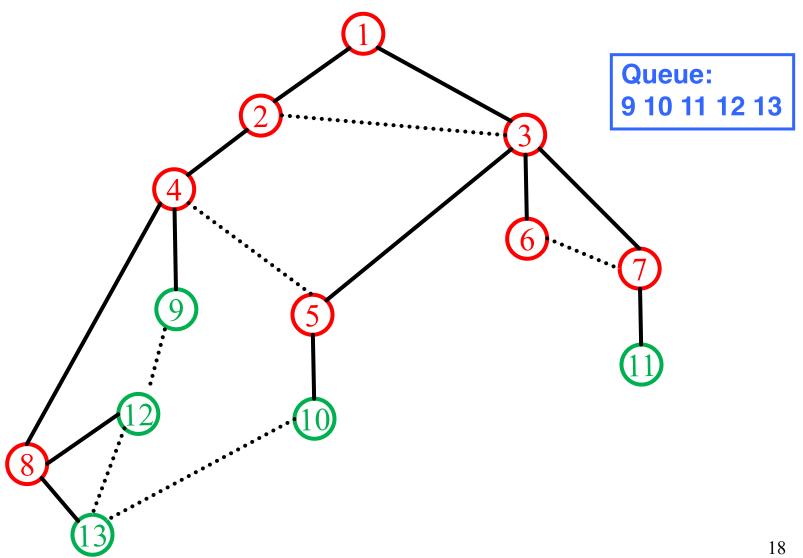


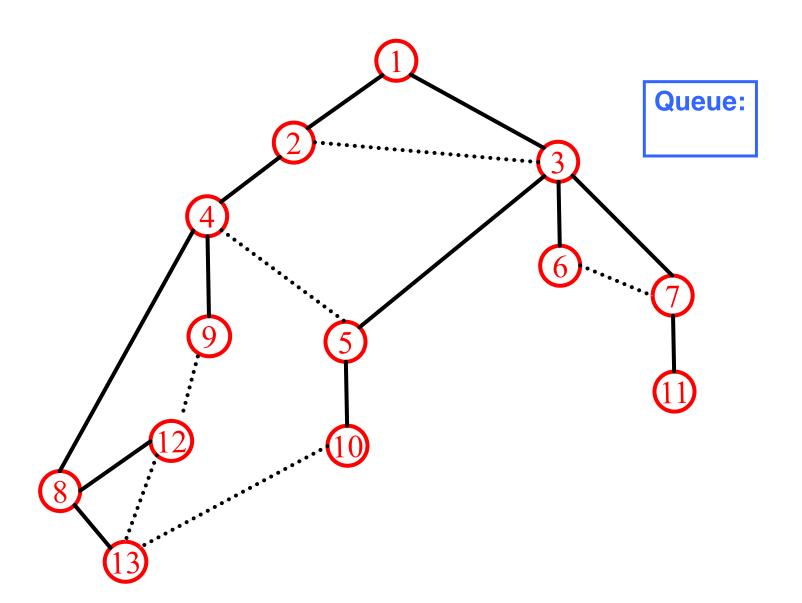












# **BFS** Analysis

Global initialization: mark all vertices "undiscovered"

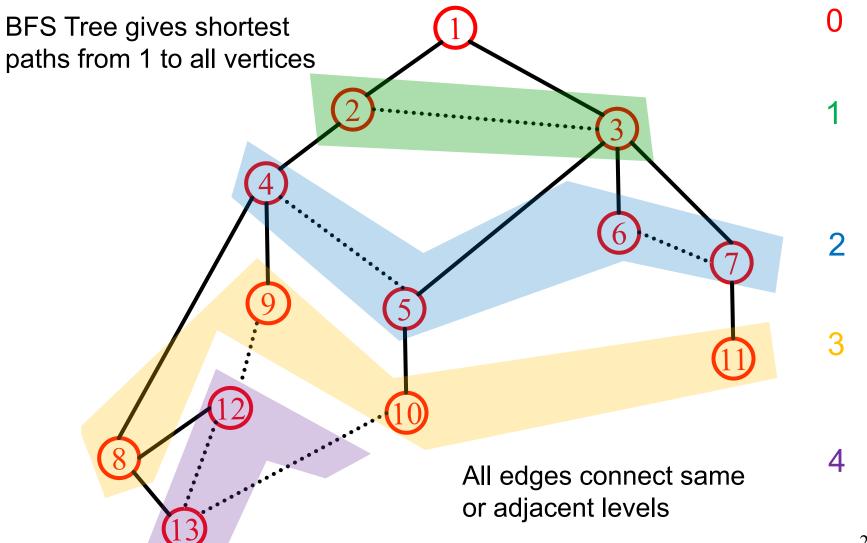
```
BFS(s)
                                        O(n) times: Once from
   mark s discovered
                                     every vertex if G is connected
   queue = \{s\}
   while queue not empty
                                           deg(u) \leq O(n) times
      u = remove first(queue)
      for each edge {u,x}
          if (x is undiscovered)
              mark x discovered
              append x on queue
      mark u fully-explored
```

If we use adjacency list:  $O(n) + O(\sum_{v} \deg(v)) = O(m+n)$ 

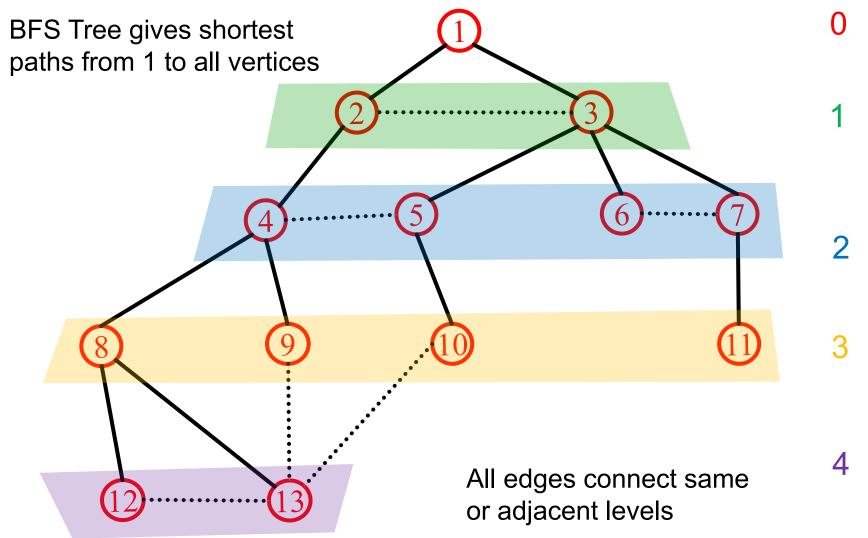
### Properties of BFS

- BFS(s) visits a vertex v if and only if there is a path from s to v
- Edges into then-undiscovered vertices define a tree the "Breadth First spanning tree" of G
- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i
- All nontree edges join vertices on the same or adjacent levels of the tree

# BFS Application: Shortest Paths



# BFS Application: Shortest Paths



### Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Pf: Consider an edge  $\{x,y\}$ Say x is first discovered and it is added to level i. We show y will be at level i or i+1

This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level i + 1.

# Properties of BFS

Lemma: All vertices at level *i* of BFS(s) have shortest path distance *i* to s.

Claim: If L(v) = i then shortest path  $\leq i$ 

Pf: Because there is a path of length i from s to v in the BFS tree

Claim: If shortest path = i then  $L(v) \le i$ 

Pf: If shortest path = i, then say  $s = v_0, v_1, ..., v_i = v$  is the shortest path to v.

By previous claim,

$$L(v_1) \le L(v_0) + 1$$
  
 $L(v_2) \le L(v_1) + 1$ 

$$L(v_i) \le L(v_{i-1}) + 1$$

So,  $L(v_i) \leq i$ .

This proves the lemma.

### Why Trees?

Trees are simpler than graphs

Many statements can be proved on trees by induction

So, computational problems on trees are simpler than general graphs

This is often a good way to approach a graph problem:

- Find a "nice" tree in the graph, i.e., one such that nontree edges have some simplifying structure
- Solve the problem on the tree
- Use the solution on the tree to find a "good" solution on the graph