CSE 421

Bellman Ford - Linear Programming

Shayan Oveis Gharan

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G=(V, E)$ and a source vertex s, where the weight of edge (u, v) is $c_{u, v}$
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra's Algorithm fails when weights are negative

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
Let us characterize $\operatorname{OPT}(v, i)$.

Case 1: $O P T(v, i)$ path has less than i edges.

- Then, $\operatorname{OPT}(v, i)=O P T(v, i-1)$.

Case 2: $\operatorname{OPT}(v, i)$ path has exactly i edges.

- Let $s, v_{1}, v_{2}, \ldots, v_{i-1}, v$ be the $O P T(v, i)$ path with i edges.
- Then, $s, v_{1}, \ldots, v_{i-1}$ must be the shortest $s-v_{i-1}$ path with at most i - 1 edges. So,

$$
O P T(v, i)=O P T\left(v_{i-1}, i-1\right)+c_{v_{i-1}, v}
$$

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
$\operatorname{OPT}(v, i)=\left\{\begin{array}{lr}0 & \text { if } v=s \\ \infty & \text { if } v \neq s, i=0 \\ \min \left(\operatorname{OPT}(v, i-1), \min _{u:(u, v) \text { an edge }} \operatorname{OPT}(u, i-1)+c_{u, v}\right)\end{array}\right.$

So, for every $\mathrm{v}, \operatorname{OPT}(v, ?)$ is the shortest path from s to v. But how long do we have to run?
Since G has no negative cycle, it has at most $n-1$ edges. So, $\operatorname{OPT}(v, n-1)$ is the answer.

Bellman Ford Algorithm

```
for v=1 to n
    if v}=\boldsymbol{S}\mathrm{ then
    M[v,0]=\infty
M[s,0]=0.
for i=1 to n-1
    for v=1 to n
        M[v,i]=M[v,i-1]
        for every edge (u,v)
        M[v,i]=min(M[v,i], M[u,i-1]+cu,v)
```

Running Time: $O(n m)$
Can we test if G has negative cycles?

Bellman Ford Algorithm

```
for v=1 to n
    if v}=\boldsymbol{S}\mathrm{ then
        M[v,0]=\infty
M[s,0]=0.
for i=1 to n-1
    for v=1 to n
        M[v,i]=M[v,i-1]
        for every edge (u,v)
        M[v,i]=min(M[v,i], M[u,i-1]+cu,v)
```

Running Time: $O(\mathrm{~nm})$
Can we test if G has negative cycles?
Yes, run for $\mathrm{i}=1 \ldots 2 \mathrm{n}$ and see if the $\mathrm{M}[\mathrm{v}, \mathrm{n}-1]$ is different from $\mathrm{M}[\mathrm{v}, 2 \mathrm{n}]$

System of Linear Equations

Find a solution to

$$
\begin{aligned}
& x_{3}-x_{1}=4 \\
& x_{3}-2 x_{2}=3 \\
& x+2 x_{2}+x_{3}=7
\end{aligned}
$$

Can be solved by Gaussian elimination method

Linear Programming

Optimize a linear function subject to linear inequalities

$$
\begin{array}{ll}
\max & 3 x_{1}+4 x_{3} \\
\text { s.t., } & x_{1}+x_{2} \leq 5 \\
& x_{3}-x_{1}=4 \\
& x_{3}-x_{2} \geq-5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

- We can have inequalities,
- We can have a linear objective functions

Applications of Linear Programming

Generalizes: $A x=b, 2-p e r s o n ~ z e r o-s u m ~ g a m e s, ~ s h o r t e s t ~ p a t h, ~$ max-flow, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?

- We can solve linear programming in polynomial time.
- Useful for approximation algorithms
- We can model many practical problems with a linear model and solve it with linear programming

Linear Programming in Practice:

- There are very fast implementations: IBM CPLEX, Gorubi in Python, CVX in Matlab,
- CPLEX can solve LPs with millions of variables/constraints in minutes

Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four category of food: veggies, meat, fruits, and dairy. Each category has its own (p)rice, (c)alory and (h)appiness per pound:

	veggies	meat	fruits	dairy
price	p_{v}	p_{m}	p_{f}	p_{d}
calorie	c_{v}	c_{m}	c_{f}	c_{d}
happiness	h_{v}	h_{m}	h_{f}	h_{d}

Linear Modeling: Consider a linear model: If we eat 0.5 lb of meat, 0.2 lb of fruits we will be $0.5 h_{m}+0.2 h_{f}$ happy

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

Diet Problem by LP

- You should eat 1500 calaroies to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

	veggies	meat	fruits	dairy
price	p_{v}	p_{m}	p_{f}	p_{d}
calorie	c_{v}	c_{m}	c_{f}	c_{d}
happiness	h_{v}	h_{m}	h_{f}	h_{d}

$$
\begin{array}{ll}
\max & x_{v} h_{v}+x_{m} h_{m}+x_{f} h_{f}+x_{d} h_{d} \\
\text { s.t. } & x_{v} p_{v}+x_{m} p_{m}+x_{f} p_{f}+x_{d} p_{d} \leq 20 \\
& x_{v} c_{v}+x_{m} c_{m}+x_{f} c_{f}+x_{d} c_{d} \leq 1500 \\
& x_{v}, x_{m}, x_{f}, x_{d} \geq 0
\end{array}
$$

How to Design an LP?

- Define the set of variables
- Put constraints on your variables,
- should they be nonnegative?
- Write down the constraints
- If a constraint is not linear try to approximate it with a linear constraint
- Write down the objective function
- If it is not linear approximation with a linear function
- Decide if it is a minimize/maximization problem

Example 2: Max Flow

Define the set of variables

- For every edge e let x_{e} be the flow on the edge e

Put constraints on your variables

- $x_{e} \geq 0$ for all edge e (The flow is nonnegative)

Write down the constraints

- $x_{e} \leq c(e)$ for every edge e, (Capacity constraints)
- $\sum_{e \text { out of } v} x_{e}=\sum_{e \text { in to } v} x_{e} \forall v \neq s, t$ (Conservation constraints)

Write down the objective function

- $\sum_{e \text { out of } s} x_{e}$

Decide if it is a minimize/maximization problem

- max

Example 2: Max Flow

$$
\begin{array}{lll}
\max & \sum_{e \text { out of } s} x_{e} \\
\text { s.t. } & \sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e} & \forall v \neq s, t \\
& x_{e} \leq c(e) & \forall e \\
& x_{e} \geq 0 & \forall e
\end{array}
$$

Q: Do we get exactly the same properties as Ford Fulkerson? A: Not necessarily, the max-flow may not be integral

Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from s to t.
But for every pipe edge e we have to pay $p(e)$ for each gallon of water that we send through e.

Goal: Send 100 gallons of water from s to t with minimum possible cost

$$
\begin{array}{lll}
\min & \sum_{e \in \mathrm{E}} p(e) \cdot x_{e} & \\
\text { s.t. } & \sum_{e \text { out of } v} x_{e}=\sum_{e \text { in to } v} x_{e} & \forall v \neq s, t \\
& \sum_{e \text { out of } s} x_{e}=100 & \\
& x_{e} \leq c(e) & \forall e \\
& x_{e} \geq 0 & \forall e
\end{array}
$$

Summary (Linear Programming)

- Linear programming is one of the biggest advances in $20^{\text {th }}$ century
- It is being used in many areas of science: Mechanics, Physics, Operations Research, and in CS: AI, Machine Learning, Theory, ...
- Almost all problems that we talked can be solved with LPs, Why not use LPs?
- Combinatorial algorithms are typically faster
- They exhibit a better understanding of worst case instances of a problem
- They give certain structural properties, e.g., Integrality of Max-flow when capacities are integral
- There is rich theory of LP-duality which generalizes max-flow min-cut theorem

What is next?

- CSE 431 (Complexity Course)
- How to prove lower bounds on algorithms?
- CSE 521 (Graduate Algorithms Course)
- How to design streaming algorithms?

- How to design algorithms for high dimensional data?
- How to use matrices/eigenvalues/eigenvectors to design algorithms
- How to use LPs to design algorithms?
- CSE 525 (Graduate Randomized Algorithms Course)
- How to use randomization to design algorithms?
- How to use Markov Chains to design algorithms?

