
CSE 421

Bellman Ford – Linear Programming

Shayan Oveis Gharan

1

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐!,#
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

3

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

4

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣$, 𝑣%, … , 𝑣&'$, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.
• Then, 𝑠, 𝑣$, … , 𝑣&'$ must be the shortest 𝑠 - 𝑣&'$ path with at

most 𝑖 − 1 edges. So,
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣&'$, 𝑖 − 1 + 𝑐#!"#,#

5

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = 4
0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,#)* +,-+
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,#)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

6

Bellman Ford Algorithm

7

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Bellman Ford Algorithm

8

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n]

System of Linear Equations

Find a solution to

𝑥!−𝑥" = 4
𝑥! − 2𝑥# = 3
𝑥 + 2𝑥# + 𝑥! = 7

Can be solved by Gaussian elimination method

9

Linear Programming

Optimize a linear function subject to linear inequalities

max 3𝑥" + 4𝑥!
𝑠. 𝑡. , 𝑥"+𝑥# ≤ 5

𝑥!−𝑥" = 4
𝑥! − 𝑥# ≥ −5
𝑥", 𝑥#, 𝑥! ≥ 0

• We can have inequalities,
• We can have a linear objective functions

10

Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path,
max-flow, matching, multicommodity flow, MST, min weighted
arborescence, …

Why significant?
• We can solve linear programming in polynomial time.
• Useful for approximation algorithms
• We can model many practical problems with a linear model

and solve it with linear programming

Linear Programming in Practice:
• There are very fast implementations: IBM CPLEX, Gorubi in

Python, CVX in Matlab, ….
• CPLEX can solve LPs with millions of variables/constraints in

minutes

11

Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four
category of food: veggies, meat, fruits, and dairy. Each category has its
own (p)rice, (c)alory and (h)appiness per pound:

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb
of fruits we will be 0.5 ℎ! + 0.2 ℎ" happy
• You should eat 1500 calories to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?

12

veggies meat fruits dairy
price 𝑝$ 𝑝% 𝑝& 𝑝'
calorie 𝑐$ 𝑐% 𝑐& 𝑐'
happiness ℎ$ ℎ% ℎ& ℎ'

Diet Problem by LP

• You should eat 1500 calaroies to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?

13

veggies meat fruits dairy
price 𝑝$ 𝑝% 𝑝& 𝑝'
calorie 𝑐$ 𝑐% 𝑐& 𝑐'
happiness ℎ$ ℎ% ℎ& ℎ'

max 𝑥#ℎ# + 𝑥2ℎ2 + 𝑥3ℎ3 + 𝑥4ℎ4
𝑠. 𝑡. 𝑥#𝑝# + 𝑥2𝑝2 + 𝑥3𝑝3 + 𝑥4𝑝4 ≤ 20

𝑥#𝑐# + 𝑥2𝑐2 + 𝑥3𝑐3 + 𝑥4𝑐4 ≤ 1500
𝑥# , 𝑥2, 𝑥3 , 𝑥4 ≥ 0

#pounds of veggies, meat, fruits, dairy to eat per day

How to Design an LP?

• Define the set of variables

• Put constraints on your variables,
• should they be nonnegative?

• Write down the constraints
• If a constraint is not linear try to approximate it with a linear

constraint

• Write down the objective function
• If it is not linear approximation with a linear function

• Decide if it is a minimize/maximization problem

14

Example 2: Max Flow

Define the set of variables
• For every edge 𝑒 let 𝑥# be the flow on the edge 𝑒

Put constraints on your variables
• 𝑥# ≥ 0 for all edge e (The flow is nonnegative)

Write down the constraints
• 𝑥# ≤ 𝑐(𝑒) for every edge e, (Capacity constraints)
• ∑# $%& $' (𝑥# = ∑#)* &$ (𝑥# ∀𝑣 ≠ 𝑠, 𝑡 (Conservation constraints)

Write down the objective function
• ∑# $%& $' + 𝑥#
Decide if it is a minimize/maximization problem
• max

15

Example 2: Max Flow

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral

16

max I
5 678 69 :

𝑥5

𝑠. 𝑡. I
5 ;!< ;3 #

𝑥5 =I
5 &= <; #

𝑥5 ∀𝑣 ≠ 𝑠, 𝑡

𝑥5 ≤ 𝑐 𝑒 ∀𝑒
𝑥5 ≥ 0 ∀𝑒

Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from 𝑠 to 𝑡.
But for every pipe edge 𝑒 we have to pay 𝑝 𝑒
for each gallon of water that we send through 𝑒.

Goal: Send 100 gallons of water from 𝑠 to 𝑡 with minimum
possible cost

17

min =
#∈-

𝑝 𝑒 ⋅ 𝑥#

𝑠. 𝑡. =
$%& $' (

𝑥# ==
./ 01 (

𝑥# ∀𝑣 ≠ 𝑠, 𝑡

=
$%& $' +

𝑥# = 100

𝑥# ≤ 𝑐 𝑒 ∀𝑒
𝑥# ≥ 0 ∀𝑒

Summary (Linear Programming)

• Linear programming is one of the biggest advances in 20th
century

• It is being used in many areas of science: Mechanics,
Physics, Operations Research, and in CS: AI, Machine
Learning, Theory, …

• Almost all problems that we talked can be solved with LPs,
Why not use LPs?
• Combinatorial algorithms are typically faster
• They exhibit a better understanding of worst case instances of a

problem
• They give certain structural properties, e.g., Integrality of Max-flow when

capacities are integral

• There is rich theory of LP-duality which generalizes max-flow
min-cut theorem

18

What is next?

• CSE 431 (Complexity Course)
• How to prove lower bounds on algorithms?

• CSE 521 (Graduate Algorithms Course)
• How to design streaming algorithms?
• How to design algorithms for high dimensional data?
• How to use matrices/eigenvalues/eigenvectors to design algorithms
• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)
• How to use randomization to design algorithms?
• How to use Markov Chains to design algorithms?

19

