CSE 421

Matching, Connectivity, Image Segmentation

Shayan Oveis Gharan

Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching $\mathrm{M} \subseteq \mathrm{E}$ is perfect if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

- Clearly we must have $|\mathrm{X}|=|\mathrm{Y}|$.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Bipartite Matching: N(S)

Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S .

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq X$. Pf. Each $v \in S$ has to be matched to a unique node in $\mathrm{N}(\mathrm{S})$.

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G=(X \cup Y, E)$ be a bipartite graph with $|\mathrm{X}|=|\mathrm{Y}|$.
Then, G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow
This was the previous observation.
If $|\mathrm{N}(\mathrm{S})|<|\mathrm{S}|$ for some S , then there is no perfect matching.

Marriage Theorem

Pf. $\exists S \subseteq X$ s.t., $|N(S)|<|S| \Leftarrow \mathrm{G}$ does not a perfect matching
Formulate as a max-flow and let (A, B) be the min s-t cut
G has no perfect matching $=>v\left(f^{*}\right)<|X|$. So, $\operatorname{cap}(A, B)<|X|$
Define $X_{A}=X \cap A, X_{B}=X \cap B, Y_{A}=Y \cap A$
Then, $\operatorname{cap}(A, B)=\left|X_{B}\right|+\left|Y_{A}\right|$
Since min-cut does not use ∞ edges, $N\left(X_{A}\right) \subseteq Y_{A}$ $\left|N\left(X_{A}\right)\right| \leq\left|Y_{A}\right|=\operatorname{cap}(A, B)-\left|X_{B}\right|=\operatorname{cap}(A, B)-|X|+\left|X_{A}\right|<\left|X_{A}\right|$

Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path: $\mathrm{O}\left(\mathrm{m} \operatorname{val}\left(\mathrm{f}^{*}\right)\right)=\mathrm{O}(\mathrm{mn})$.
Capacity scaling: $O\left(m^{2} \log C\right)=O\left(m^{2}\right)$.
Shortest augmenting path: $O\left(m n^{1 / 2}\right)$.

Non-bipartite matching.
Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
Blossom algorithm: O(n²). [Edmonds 1965]
Best known: O($\mathrm{m} \mathrm{n}^{1 / 2}$). [Micali-Vazirani 1980]

Network Connectivity

Network Connectivity

Given a digraph $G=(V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least one edge in F.

Ex: In testing network reliability

Network Connectivity using Min Cut

Thm. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf.
i) We showed that max number edge disjoint s-t paths = max flow.
ii) Max-flow Min-cut theorem => min s-t cut = max-flow
iii) For a s-t cut $(A, B), \operatorname{cap}(A, B)$ is equal to the number of edges out of A. In other words, every s-t cut (A, B) corresponds to $\operatorname{cap}(A, B)$ edges whose removal disconnects s from t.

So, max number of edge disjoint s-t paths $=$ min number of edges to disconnect s from t .

Image Segmentation

Given an image we want to separate foreground from background

- Central problem in image processing.
- Divide image into coherent regions.

Foreground / background segmentation

Label each pixel as foreground/background.

- $\mathrm{V}=$ set of pixels, $\mathrm{E}=$ pairs of neighboring pixels.
- $a_{i} \geq 0$ is likelihood pixel i in foreground.
- $b_{i} \geq 0$ is likelihood pixel i in background.
- $p_{i, j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

Accuracy: if $a_{i}>b_{i}$ in isolation, prefer to label in foreground.
Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
Find partition (A, B) that maximizes:

Foreground Background

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E} p_{i, j}
$$

$i \in A, j \in B$

Image Seg: Min Cut Formulation

Difficulties:

- Maximization (as opposed to minimization)
- No source or sink
- Undirected graph

Step 1: Turn into Minimization
Maximizing

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\ i \in A, j \in B}} p_{i, j}
$$

Equivalent to minimizing $+\sum_{i \in V} a_{i}+\sum_{j \in V} b_{j}-\sum_{i \in A} a_{i}-\sum_{j \in B} b_{j}+\sum_{\substack{(i, j) \in E \\ i \in A, j \in B}} p_{i, j}$
Equivalent to minimizing

$$
+\sum_{j \in B} a_{j}+\sum_{i \in A} b_{i}+\sum_{\substack{(i, j) \in E \\ i \in A, j \in B}} p_{i, j}
$$

Min cut Formulation (cont'd)

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
Add s to correspond to foreground; Add t to correspond to background Use two anti-parallel edges instead of undirected edge.

Min cut Formulation (cont'd)

Consider min cut (A, B) in G^{\prime}. ($\mathrm{A}=$ foreground.)

$$
\operatorname{cap}(A, B)=\sum_{j \in B} a_{j}+\sum_{i \in A} b_{i}+\sum_{\substack{i, j, j \in E \\ i \in A, j \in B}} p_{i, j}
$$

Precisely the quantity we want to minimize.

