CSE 421

Network Flows, Matching

Shayan Oveis Gharan

Max Flow Min Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.
Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max s-t flow is equal to the value of the min s-t cut.
Proof strategy. We prove both simultaneously by showing the TFAE:
(]$_{\left(\begin{array}{l}\mathcal{C}_{(i i)}^{(i)} \\ \mathcal{C}_{(i i i)}\end{array}\right.}$
There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
Flow f is a max flow.
There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along that path.

Pf of Max Flow Min Cut Theorem

(iii) => (i)

No augmenting path for $f=>$ there is a cut (A, B) : $v(f)=\operatorname{cap}(A, B)$

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& =\sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Running Time

Assumption. All capacities are integers between 1 and C .
Invariant. Every flow value $f(e)$ and every residual capacities $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $\sqrt{v\left(f^{*}\right) \leq n C}$ terations, if f^{*} is optimal flow.
Pf. Each augmentation increase value by at least 1 .
 More genedy intime $O\left(n . C_{1}\left(\begin{array}{l}m+n)\end{array}\right.\right.$ BFS/DFS to 2 fid ang paths $v\left(f^{*}\right) \leq n$. Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer. Pf. Since algorithm terminates, theorem follows from in manien

Newer Chang/Modity Ford-Fullcess Instead Reduce to Max-Flow/Min Cut

Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. \leq
Suppose there are k edge-disjoint paths P_{1}, \ldots, P_{k}.
Set $f(e)=1$ if e participates in some path P_{i}; else set $f(e)=0$. Since paths are edge-disjoint, f is a flow of value k . -

Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. \geq Suppose max flow value is k Integrality theorem \Rightarrow there exists 0-1 flow f of value k .
Consider edge (s, u) with $f(s, u)=1$.

- by conservation, there exists an edge (u, v) with $f(u, v)=1$
- continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.

Applications of Max Flow: Bipartite Matching

Maximum Matching Problem

Given an undirected graph $G=(\mathrm{V}, \mathrm{E})$.
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M .
Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bipartite graph $G=(X \cup Y, E)$
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.
Goal: find a matching with largest cardinality.
It is a matching

Bipartite Matching using Max Flow

Create digraph H as follows:

- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t .

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $\mathrm{G}=$ value of max flow in H .
Pf. \leq
Given max matching M of cardinality k .
Consider flow f that sends 1 unit along each of k edges of M. f is a flow, and has cardinality k. -

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $\mathrm{G}=$ value of max flow in H .
Pf. (of \geq) Let f be a max flow in H of value k .
Integrality theorem $\Rightarrow k$ is integral and we can assume f is $0-1$.
Consider $\mathrm{M}=$ set of edges from X to Y with $\mathrm{f}(\mathrm{e})=1$.

- each node in X and Y participates in at most one edge in M
- $|\mathrm{M}|=\mathrm{k}$: consider s -t cut $(s \cup X, t \cup Y)$

Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching $\mathrm{M} \subseteq \mathrm{E}$ is perfect if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

- Clearly we must have $|\mathrm{X}|=|\mathrm{Y}|$.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Bipartite Matching: N(S)

Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|\mathrm{N}(\mathrm{S})| \geq|\mathrm{S}|$ for all subsets $\mathrm{S} \subseteq X$. Pf. Each $v \in S$ has to be matched to a unique node in $\mathrm{N}(\mathrm{S})$.

Cannot have a perfect

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G=(X \cup Y, E)$ be a bipartite graph with $||X|=|Y|$.
Then, G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow
This was the previous observation.
If $|N(S)|<|S|$ for some S, then there is no perfect matching.

Marriage Theorem

Pf. $\exists S \subseteq X$ s.t., $|N(S)|<|S| \Leftarrow \mathrm{G}$ does not a perfect matching
Formulate as a max-flow and let (A, B) be the min s-t cut
G has no perfect matching $=>v\left(f^{*}\right)<|X|$. So, $\operatorname{cap}(A, B)<|X|$
Define $X_{A}=X \cap A, X_{B}=X \cap B, Y_{A}=Y \cap A$
Then, $\operatorname{cap}(A, B)=\left|X_{B}\right|+\left|Y_{A}\right|$
Since min-cut does not use ∞ edges, $N\left(X_{A}\right) \subseteq Y_{A}$ $\left|N\left(X_{A}\right)\right| \leq\left|Y_{A}\right|=\operatorname{cap}(A, B)-\left|X_{B}\right|=\operatorname{cap}(A, B)-|X|+\left|X_{A}\right|<\left|X_{A}\right|$

Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path: $\mathrm{O}\left(\mathrm{m} \operatorname{val}\left(\mathrm{f}^{*}\right)\right)=\mathrm{O}(\mathrm{mn})$.
Capacity scaling: $O\left(m^{2} \log C\right)=O\left(m^{2}\right)$.
Shortest augmenting path: $O\left(m n^{1 / 2}\right)$.

Non-bipartite matching.
Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
Blossom algorithm: O(n²). [Edmonds 1965]
Best known: O($\mathrm{m} \mathrm{n}^{1 / 2}$). [Micali-Vazirani 1980]

