

Hew 6 difficult DP. stat early

Alg Design by Induction, Dynamic Programming

Shayan Oveis Gharan

Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Sorting to reduce Subproblems

IS: For jobs $1, \ldots, \mathrm{n}$ we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Guessing
Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $\mathrm{p}(\mathrm{n})=$ largest index $\mathrm{i}<\mathrm{n}$ such that job i is compatible with n .
- Then, we just need to find OPT of $1, \ldots, p(n)$

Case 2: OPT does not select job n.
Take best of the two

- Then, OPT is just the optimum $1, \ldots, n-1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Sorting to reduce Subproblems

IS: For jobs $1, \ldots$, n we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $\mathrm{p}(\mathrm{n})=1$ This is how we differentiate gatible with n .
- Then,
 from solving Maximum Independent Set Problem
- Then, OPT is just the optimum $1, \ldots, n-1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Let OPT(j) denote the OPT solution of $1, \ldots, j \rightarrow$ Induction predicate LLet OPT(j) deno

Case 1: OPT(j) has job j

- So, all jobs i that are
- Let $\mathrm{p}(\mathrm{j})=$ largest index
- So $\underbrace{O P T(j)=O P T(p(j)) \cup\{j}\}$.

Case 2: OPT(j) does not select job j.

- Then, $\operatorname{OPT}(j)=O P T(j-1)$

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max (\underbrace{w_{j}+O P T(p(j)), O P T(j-1)}) & \text { o. w. }
\end{array}\right.
$$

Algorithm

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,\mp@subsup{w}{n}{}.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
Compute-Opt(j) {
    if (j = 0)
        else
        return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems
$>$ So, we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: $n, s(1), \ldots, s(n)$ and $f(1), \ldots, f(n)$ and w_{1}, \ldots, w_{n}.
Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n) \cdot \leftarrow(n \log n)$
Compute $p(1), p(2), \ldots, p(n) \longleftarrow \operatorname{can} O\left(n l_{y}\right)$
for $j=1$ to n
$\mathrm{M}[j]=$ empty
$M[0]=0$ Base Case of induction
$\left\{\begin{array}{l}\text { M-Compute-Opt(j) }\{ \\ \text { if (Maj] is empty) }\end{array}\right.$
$\mathrm{M}[\mathrm{j}]=\max \left(\mathrm{w}_{\mathrm{j}}+\mathrm{M}\right.$-Compute-Opt(p(j)), M-Compute-Opt(j-1))し return M[j]
\}
\{9, ar bastions to full $O(1)$ to fill out each. 8

Bottom up Dynamic Programming

You can also avoid recursion

- recursion may be easier conceptually when you use induction

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
```

Iterative-Compute-Opt \{
mp] $=0$
for $j=1$ to n
$M[j]=\max \left(w_{j}+M[p(j)], M[j-1]\right)$

\}

Output MEn]

Claim: $\mathrm{M}[\mathrm{j}]$ is value of OPT(j)
Timing: Easy. Main loop is $\mathrm{O}(\mathrm{n})$; sorting is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

j	w_{j}	$\mathrm{P}(\mathrm{j})$	OPT(j)
0			0
1	3	0	3
2	4	0	
3	1	0	
4	3	1	
5	4	0	
6	3	2	
7	2	3	
8	4	5	

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack." Item i weighs $\underline{w}_{i}>0$ kilograms and has value $\underline{v_{i}}>0$. Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value ${ }_{j} \downarrow \downarrow$
Ex: OPT is $\{3,4\}$ with (weight 10) and value 36 .
Item Value Weight

Greedy: _repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5, \underline{Q}\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: First Attempt

Let OPT $(\stackrel{\downarrow}{i})=$ Max value of subsets of items $1, \ldots, i$ of weight $\leq W$.
Case 1: OPT(i) does not select item i

- In this caes $\operatorname{OPT}(i)=\operatorname{OPT}(i-1)$

Case 2: OPT(i) selects item i

- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $\operatorname{OPT}(i-1)$ because we now want to pack as much value into box of weight $\leq W-w_{i}$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthenning Hypothesis)
 $\operatorname{OPT}(n, W)$ is solution to problem.

$\downarrow \downarrow$
Let $\operatorname{OPT}(i, w)=$ Max value subset of items $1, \ldots, i$ of weight $\leq w$ where $0 \leq i \leq n$ and $0 \leq w \leq W$. We have n. W many
subproblem

Case 1: $\operatorname{OPT}(i, w)$ selects item i

- In this case, $O P T(i, w)=v_{i}+O P T\left(i-1, w^{2}-w_{i}\right)$

Case 2: OPT (i, w) does not select item i

- In this case, $\operatorname{OPT}(i, w)=O P T(i-1, w)$.

Therefore,

$$
O P T(i, w)= \begin{cases}0 \quad \text { (Base Case) } & \text { If } i=0 \\ \operatorname{OPT}(i-1, w) \leftarrow & \text { If } w_{i}>w \\ \underbrace{\max \left(O P T(i-1, w), v_{i}+O P T\left(i-1, w-w_{i}\right)\right.} & \text { O.w., }\end{cases}
$$

```
Compute-OPT(i,w)
    if M[i,w] == empty
        if (i==0)
            M[i,w]=0 Base Case
                    recursive
        else if (wi
            M[i,w]=Comp-OPT(i-1,w) e special case
        else
            M[i,w]= max {Comp-OPT(i-1,w), vi
    return M[i, w]
```

```
\(\left\{\begin{array}{l}\text { for } w=0 \text { to } w \\ m[0, w]=0\end{array}\right\}\) Base Case
    for \(\mathrm{i}=1\) to n Non-recursive
        for \(w=1\) to \(w \leftarrow\)
            if \(\left(w_{i}>w\right)\) m[i,w] \(M[i-1, w] \quad\) calculetel before \(M[i, w]\)
            else
                \(M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
                make sane you have computul
                \(M\left[j, w^{\prime} j\right.\) for all \(j<i\) and \(N^{\prime} \leqslant w 24\)
```


DP for Knapsack

$$
w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0											
$n+1$	\{1,2 \}	0											
	\{ $1,2,3$ \}	0											
	$\{1,2,3,4\}$	0											
\downarrow	$\{1,2,3,4,5\}$	0											

$$
W=11
$$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \curvearrowleft \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
工 W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	$\{1,2\}$ $\{1,2,3\}$	0	$\operatorname{an})(\cos (\operatorname{OPT}(1,1))>1$ item 2 cannot be used $B C \quad W_{2}>1$										
	$\{1,2,3,4\}$	0											
	$\{1,2,3,4,5\}$	0											

$$
W=11
$$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \leftarrow \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
w+1
$$

DP for Knapsack

$$
\ldots \quad W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1, 2 \}	0	1		7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18						
	$\{1,2,3,4\}$	0	1										
\downarrow	$\{1,2,3,4,5\}$	0	1										

OPT: $\{4,3\}$
value $=22+18=40$
$W=11$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

W + 1

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1, 2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{ 1, 2, 3 \}	0	1	6	7	7	18	19	24	25	(25)	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29		
	$\{1,2,3,4,5\}$	0	1				$29=\operatorname{man}(\operatorname{DPT}(3,9), 22+\operatorname{OPT}(3) 7$						
	$\begin{gathered} \text { OPT: }\{4,3\} \\ \text { value }=22+18=40 \end{gathered}$									em	Value	W	eight
										1	1		1
$\begin{aligned} & \text { if }\left(w_{i}>w\right) \\ & \quad M[i, w]=M[i-1, w] \end{aligned}$										2	6		2
										3	18		5
else										4	22		6
$\mathrm{M}[\mathrm{i}, \mathrm{w}]=\max \left\{\mathrm{M}[\mathrm{i}-1, \mathrm{w}], \mathrm{V}_{\mathrm{i}}+\mathrm{M}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right\}$										5	28		7

DP for Knapsack

$$
W+1
$$

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum
in time Poly(n, log W).

DP Ideas so far

- You may have to define an ordering to decrease \#subproblems
- $\operatorname{OPT}(\mathrm{i}, \mathrm{w})$ is exactly the predicate of induction
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

