
CSE 421

Dynamic Programming

Shayan Oveis Gharan

1

Strengthening Induction Hypothesis
We have seen examples on how to design algorithms by
induction

In some cases it may help to strengthen the IH.
High-level plan: Prove 𝑃 𝑛 ∧ 𝑄(𝑛) inductively.

IH: Assume 𝑃 𝑛 − 1 ∧ 𝑄 𝑛 − 1 .

IS: You may use 𝑄(𝑛 − 1) to help you to prove 𝑃(𝑛)
Remember you also have to prove 𝑄 𝑛 .

2

Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥!, … , 𝑥" of integers (not
necessarily positive),
Goal: Find a subsequence of consecutive elements s.t., the
sum of its numbers is maximum.

1 -3 7 -2 -3 8 -10 1 -7

Applications: Figuring out the highest interest rate period in
stock market

3

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥!, … , 𝑥"#! we can compute
the maximum-sum subsequence, and the maximum-sum
suffix subsequence.

-3, 6, -1, 2, -8, 6, -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥&, … , 𝑥"#! is the
maximum-sum suffix subsequences.

• If 𝑥& +⋯+ 𝑥"#! + 𝑥" > 𝑥' +⋯+ 𝑥(then 𝑥&, … , 𝑥" will be
the new maximum-sum subsequence

5

𝑥! 𝑥" 𝑥# 𝑥$%&Can be empty

Are we done?

6

Updating Max Suffix Subsequence

Say 𝑥&, … , 𝑥"#! is the maximum-sum suffix subsequences
of 𝑥!, … , 𝑥"#!.

• If 𝑥& +⋯+ 𝑥" ≥ 0 then,
𝑥&, … , 𝑥" is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.

7

-3, 6, -1, 2, -8, 6, -2, 4
𝑥$

Maximum Sum Subsequence ALG

8

Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3 6 -1 2 -8 6 -2 4

Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose
• 𝑥!, … , 𝑥" is the max-sum-subseq of 𝑥&, … , 𝑥$%&
• 𝑥#, … , 𝑥$%& is the max-suffix-sum-sub of 𝑥&, … , 𝑥$%&

Ind Step: Suppose 𝑥', … , 𝑥(is the max-sum-subseq of 𝑥&, … , 𝑥$

Case 1 (𝑏 < 𝑛): 𝑥', … , 𝑥(is also the max-sum-subseq of 𝑥&, … , 𝑥$%&
So, by IH 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥', … , 𝑥(%& is the max-suff-sum of
𝑥&, … , 𝑥$%&.
If not, then by IH

𝑥# +⋯𝑥$%& > 𝑥' +⋯+ 𝑥$%&
So, 𝑥# +⋯+ 𝑥$ > 𝑥' +⋯+ 𝑥(which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT

9

Special Cases (You don’t need to mention if follows from above):
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose
• 𝑥!, … , 𝑥" is the max-sum-subseq of 𝑥&, … , 𝑥$%&
• 𝑥#, … , 𝑥$%& is the max-suffix-sum-sub of 𝑥&, … , 𝑥$%&

Ind Step: Suppose 𝑥', … , 𝑥$ is the max-suffix-sum-subseq of 𝑥&, … , 𝑥$
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have 𝑥# +⋯+ 𝑥$ < 0. So the
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥', … , 𝑥$ is nonempty): We must have 𝑥' +⋯+ 𝑥$ ≥ 0.
Also, 𝑥', … , 𝑥$%& must be the max-suffix-sum of 𝑥&, … , 𝑥$%&. If not, by IH

𝑥' +⋯+ 𝑥$%& < 𝑥# +⋯+ 𝑥$%&
which implies 𝑥' +⋯+ 𝑥$ < 𝑥# +⋯+ 𝑥$ which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum
subsequence.

10

Summary

• Before designing an algorithm study properties of
optimum solution

• If ordinary induction fails, you may need to strengthen
the induction hypothesis

11

Dynamic Programming

Algorithmic Paradigm
Greedy: Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems,
solve each sub-problem independently, and combine solution to
sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems. Memorize the answers to obtain polynomial
time ALG.

Dynamic Programming History
Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

• "it's impossible to use dynamic in a pejorative sense"

• "something not even a Congressman could object to"

Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Applications

Dynamic programming is nothing but algorithm design by
induction!

We just ”remember” the subproblems that we have solved
so far to avoid re-solving the same sub-problem many
times.

Dynamic Programming

Weighted Interval Scheduling

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤"
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.

18
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:
• Consider jobs in ascending order of finishing time
• Add job to a subset if it is compatible with prev added jobs.
OBS: Greedy ALG fails spectacularly (no approximation ratio) if
arbitrary weights are allowed:

19

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by weight

Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛 are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling
for < 𝑛 jobs.

IS: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?
A: No, How many subproblems are there?
Potentially 2$ all possible subsets of jobs.

20

Take best of the two

n
n-1 n-2

n-2 n-3 n-3 n-4

A Bad Example

Consider jobs n/2+1,…,n. These decisions have no impact on one
another.
How many subproblems do we get?

21
Time

1

n/2+1
2

n/2+2
3

n/2+3

n/2

n

Sorting to Reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

22
n

n-1

n-2

P(n)+1
P(n)

1

Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

23

Take best of the two

This is how we differentiate
from solving Maximum

Independent Set Problem

Bad Example Review

How many subproblems do we get in this sorted order?

24
Time

1

2
3

4
5

6

n-1

n

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j.
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = A
0 if 𝑗 = 0
max 𝑤" + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

25

This is the most important
step in design DP algorithms

Algorithm

26

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows like Fibonacci sequence

27

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

28

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

Memoization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

Bottom up Dynamic Programming

29

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recusion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

3

4

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

77

7

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

548

327

236

045

134

013

042

031

00

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

