CSE 421

Dynamic Programming

Shayan Oveis Gharan

Strengthening Induction Hypothesis

We have seen examples on how to design algorithms by induction

In some cases it may help to strengthen the IH. High-level plan: Prove $P(n) \wedge Q(n)$ inductively.

IH: Assume $P(n-1) \wedge Q(n-1)$.
IS: You may use $Q(n-1)$ to help you to prove $P(n)$
Remember you also have to prove $Q(n)$.

Maximum Consecutive Subsequence

Problem: Given a sequence x_{1}, \ldots, x_{n} of integers (not necessarily positive),
Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

$$
\begin{array}{llllll|lll}
1 & -3 & 7 & -2 & -3 & 8 & -10 & 1 & -7
\end{array}
$$

Applications: Figuring out the highest interest rate period in stock market

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given x_{1}, \ldots, x_{n-1} we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

$$
-3, \begin{array}{|c|c|}
\hline 6,-1,2, & -8, \frac{6,-2}{x_{i}} x_{j} \\
x_{k} \quad x_{n-1}
\end{array}
$$

Say x_{i}, \ldots, x_{j} is the maximum-sum and x_{k}, \ldots, x_{n-1} is the maximum-sum suffix subsequences.

- If $x_{k}+\cdots+x_{n-1}+x_{n}>x_{i}+\cdots+x_{j}$ then x_{k}, \ldots, x_{n} will be the new maximum-sum subsequence

Are we done?

Updating Max Suffix Subsequence

$$
-3,6,-1,2,-8,6,-2, \sum_{x_{n}}^{\geqslant}
$$

Say x_{k}, \ldots, x_{n-1} is the maximum-sum suffix subsequences of x_{1}, \ldots, x_{n-1}.

- If $x_{k}+\cdots+x_{n} \geq 0$ then,
x_{k}, \ldots, x_{n} is the new maximum-sum suffix subsequence
- Otherwise,

The new maximum-sum suffix is the empty string.

Maximum Sum Subsequence ALG

```
Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {
    if (x[i] + U > S)
        S = x[i] + U
    if (x[i] + U > 0)
        U = x[i] + U
    else
        U = 0
}
Output S.
```

-3	6	-1	2	-8	6	-2	4

Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose

- x_{i}, \ldots, x_{j} is the max-sum-subseq of x_{1}, \ldots, x_{n-1}
- x_{k}, \ldots, x_{n-1} is the max-suffix-sum-sub of x_{1}, \ldots, x_{n-1}

Ind Step: Suppose x_{a}, \ldots, x_{b} is the max-sum-subseq of x_{1}, \ldots, x_{n}
Case $1(b<n): x_{a}, \ldots, x_{b}$ is also the max-sum-subseq of x_{1}, \ldots, x_{n-1} So, by $\mathrm{IH} a=i, b=j$ and the algorithm correctly outputs OPT

Case $2(b=n)$: We must have x_{a}, \ldots, x_{b-1} is the max-suff-sum of x_{1}, \ldots, x_{n-1}.
If not, then by IH

$$
x_{k}+\cdots x_{n-1}>x_{a}+\cdots+x_{n-1}
$$

So, $x_{k}+\cdots+x_{n}>x_{a}+\cdots+x_{b}$ which is a contradiction.
Therefore, $a=k$ and the algorithm correctly outputs OPT
Special Cases (You don't need to mention if follows from above):

- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose

- x_{i}, \ldots, x_{j} is the max-sum-subseq of x_{1}, \ldots, x_{n-1}
- x_{k}, \ldots, x_{n-1} is the max-suffix-sum-sub of x_{1}, \ldots, x_{n-1}

Ind Step: Suppose x_{a}, \ldots, x_{n} is the max-suffix-sum-subseq of x_{1}, \ldots, x_{n} Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have $x_{k}+\cdots+x_{n}<0$. So the algorithm correctly finds max-suffix-sum subsequence.

Case $2\left(x_{a}, \ldots, x_{n}\right.$ is nonempty): We must have $x_{a}+\cdots+x_{n} \geq 0$. Also, x_{a}, \ldots, x_{n-1} must be the max-suffix-sum of x_{1}, \ldots, x_{n-1}. If not, by IH

$$
x_{a}+\cdots+x_{n-1}<x_{k}+\cdots+x_{n-1}
$$

which implies $x_{a}+\cdots+x_{n}<x_{k}+\cdots+x_{n}$ which is a contradiction.
Therefore, $a=k$. So, the algorithm correctly finds max-suffix-sum subsequence.

Summary

- Before designing an algorithm study properties of optimum solution
- If ordinary induction fails, you may need to strengthen the induction hypothesis

Dynamic Programming

Algorithmic Paradigm

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems. Memorize the answers to obtain polynomial time ALG.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Dynamic Programming Applications

Areas:

- Bioinformatics
- Control Theory
- Information Theory
- Operations Research
- Computer Science: Theory, Graphics, AI, ...

Some famous DP algorithms

- Viterbi for hidden Markov Model
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming

Dynamic programming is nothing but algorithm design by induction!

We just "remember" the subproblems that we have solved so far to avoid re-solving the same sub-problem many times.

Weighted Interval Scheduling

Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

OBS: Greedy ALG fails spectacularly (no approximation ratio) if arbitrary weights are allowed:

by finish

by weight

Weighted Job Scheduling by Induction

Suppose $1, \ldots, n$ are all jobs. Let us use induction:
IH (strong ind): Suppose we can compute the optimum job scheduling for $<n$ jobs.

IS: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.
-- Then, just return OPT of $1, \ldots, n-1$.

Case 2: Job n is in OPT.

-- Then, delete all jobs not compatible with n and recurse.
Q: Are we done?
A: No, How many subproblems are there? Potentially 2^{n} all possible subsets of jobs.

A Bad Example

Consider jobs $\mathrm{n} / 2+1, \ldots, \mathrm{n}$. These decisions have no impact on one another.
How many subproblems do we get?

Sorting to Reduce Subproblems

IS: For jobs $1, \ldots$, n we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Case 1: Suppose OPT has job n.

- So, all jobs ithat are not compatible with n are not OPT
- Let $\mathrm{p}(\mathrm{n})=$ largest index $\mathrm{i}<\mathrm{n}$ such that job i is compatible with n .
- Then, we just need to find OPT of $1, \ldots, p(n)$

Sorting to reduce Subproblems

IS: For jobs $1, \ldots$, n we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $\mathrm{p}(\mathrm{n})=1$ This is how we differentiate gatible with n .
- Then, from solving Maximum Independent Set Problem
Case 2: OPTuk
- Then, OPT is just the optimum $1, \ldots, n-1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Bad Example Review

How many subproblems do we get in this sorted order?

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ To solve OPT(j):
Case 1: OPT(j) has job j

- So, all jobs i that are n
- Let $\mathrm{p}(\mathrm{j})=$ largest index
- So OPT $(j)=O P T(p(j)) \cup\{j\}$.

Case 2: OPT(j) does not select job j.

- Then, $\operatorname{OPT}(j)=O P T(j-1)$

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max \left(w_{j}+O P T(p(j)), O P T(j-1)\right) & \text { o.w. }
\end{array}\right.
$$

Algorithm

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and w
Sort jobs by finish times so that f(1)\leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(wi}+\mathrm{ + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems
$>$ So, we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and w, w, w,
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(wij + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```


Bottom up Dynamic Programming

You can also avoid recusion

- recursion may be easier conceptually when you use induction

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(wj + M[p(j)], M[j-1])
}
Output M[n]
```

Claim: $\mathrm{M}[\mathrm{j}]$ is value of $\mathrm{OPT}(\mathrm{j})$
Timing: Easy. Main loop is $\mathrm{O}(\mathrm{n})$; sorting is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

