2

CSE 421

Alg Design by Induction, Dynamic Programming

Shayan Oveis Gharan

Q/A

- How to practice more?
 - Try more exercises: there are lots of exercise in the book
 - See https://train.usaco.org/usacogate

- How to think, how to write?
 - Many cases it is better to spend more time on thinking than writing.
 - Try to write concise proofs for HW problems.
 - Make sure you use all assumptions of the problem.

Sample Soln of Problem 2 Midterm

In HW2-P3 we designed an algorithm to find the shortest path in a graph with weights $\{1,2,3\}$ where we break edge of weight w_e into a path of length w_e . Since all edge weights have the positive integer weights, we can run the same algorithm to construct a modified graph G'. Solve problem on G' by DFS.

Runtime: Since sum of edge weights is at most 4m G' has O(m) edges and O(m+n) vertices so the algorithm runs in O(m+n).

Correctness: Similar to HW there is a bijection between all paths from s to a vertex v in G, G', where we substitute each edge e with a path of length w_e . Therefore, the shortest path from s to v in G,G' are the same (for all v). The algorithm works since BFS finds the shortest path.

Sample Soln of Problem 3 Midterm

Run the algorithm form P4 of Sample midterm except whenever comparing A[I] with I compare A[I]/2 with I and go to left if A[I]/2 > I and right if A[I]/2 < I.

Runtime: Similar to sample midterm we have the recursion T(n)=T(n/2)+O(1), So, $T(n)=O(\log n)$.

Proof of correctness: Construct an array B where B[i]=A[i]/2 (note that this is just for sake of analysis). Since A has distinct and sorted elements, array B elements are distinct and sorted. Furthermore, since elements of A are even, elements of B are integers. Our modified algorithm above is essentially running the algorithm from sample midterm on B. Since B is sorted and has distinct integers by the same proof the algorithm succeeds.

Approximation Alg Summary

- To design approximation Alg, always find a way to lower bound OPT
- The best known approximation Alg for vertex cover is the greedy.
 - It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2

- The best known approximation Alg for set cover is the greedy.
 - It is NP-Complete to obtain better than In approximation ratio for set cover.

Single Source Shortest Path

Given an (un)directed graph G=(V,E) with non-negative edge weights $c_e \ge 0$ and a start vertex s

Find length of shortest paths from s to each vertex in G

Dijkstra(s)

- Set all vertices v undiscovered, d(v) = ∞
 Set d(s) = 0, mark s discovered.
 while there is edge from discovered vertex to undiscovered vertex,
- let (u,v) be such edge minimizing $d(u) + c_{u,v}$
- set $d(v) = d(u) + c_{u,v}$, mark v discovered

Dijkstra's Algorithm

Disjkstra's Algorithm: Correctness

Let S be the set of discovered vertices, P(k)= `If |S|=k, then for all discovered vertices $v \in S$, d(v) is the shortest path from s to v.

Base Case: This is always true when $S = \{s\}$.

IH: P(k) holds

IS: Say v is the k+1-st vertex that

we discover using edge (u,v) and we set

$$d(v) = d(u) + c_{u,v}$$

Call the path to v, P_v . If P_v is not the Shortest path, there is a shorter path P Consider the first time that P leaves S (say with edge (x,y)).

S -> x has weight (at least) d(x)

So,
$$c(P) \ge d(x) + c_{x,y} \ge d(u) + c_{u,v} = d(v) = c(P_v)$$
.

A contradiction.

Remarks on Dijkstra's Algorithm

- Algorithm also produces a tree of shortest paths to s following Parent links
- Algorithm works on directed graph (with nonnegative weights)
- The algorithm fails with negative edge weights.
 - e.g., some airline tickets

Why does it fail?

- Dijkstra's algorithm is similar to BFS:
 - Subtitute every edge with $c_e = k$ with a path of length k, then run BFS.

Implementing Dijkstra's Algorithm

Priority Queue: Elements each with an associated key Operations

- Insert
- Find-min
 - Return the element with the smallest key
- Delete-min
 - Return the element with the smallest key and delete it from the data structure
- Decrease-key
 - Decrease the key value of some element

Implementations

Arrays:

- O(n) time find/delete-min,
- O(1) time insert/decrease key

Binary Heaps:

- O(log n) time insert/decrease-key/delete-min,
- O(1) time find-min

Runs in $O((n+m)\log n)$.

```
Dijkstra(G, c, s) {
    foreach (v \in V) d[v] \leftarrow \infty //This is the key of node v
   d[s] \leftarrow 0
   foreach (v ∈ V) insert v onto a priority queue Q
   Initialize set of explored nodes S \leftarrow \{s\}
   while (Q is not empty) {
       u ← delete min element from Q
                                                              O(n) of delete min,
       S \leftarrow S \cup \{u\}
                                                             each in O(log n)
       foreach (edge e = (u, v) incident to u)
            if ((v \notin S) \text{ and } (d[u]+c_e < d[v]))
                d[v] \leftarrow d[u] + c_{\rho}
                Decrease key of v to d[v].
                Parent(v) \leftarrow
```

O(m) of decrease key, each runs in $O(\log n)$

Algorithm Design by Induction

Maximum Consecutive Subsequence

Problem: Given a sequence $x_1, ..., x_n$ of integers (not necessarily positive),

Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

Applications: Figuring out the highest interest rate period in stock market

Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are $\binom{n}{2} = \Theta(n^2)$ such sequences.

We can compute the sum of numbers in each such sequence in O(n) steps.

So, the ALG runs in $O(n^3)$.

With a clever loop we can do this in $O(n^2)$. But, can we solve in linear time?

First Attempt (Induction)

Suppose we can find the maximum-sum subsequence of $x_1, ..., x_{n-1}$. Say it is $x_i, ..., x_j$

- If $x_n < 0$ then it does not belong to the largest subsequence. So, we can output $x_i, ..., x_j$
- Suppose $x_n > 0$.
 - If j = n 1 then $x_i, ..., x_n$ is the maximum-sum subsequence.
 - If j < n-1 there are two possibilities
 - 1) $x_i, ..., x_i$ is still the maximum-sum subsequence
 - 2) A sequence x_k , ..., x_n is the maximum-sum subsequence

-3,
$$\begin{bmatrix} 7, & -2, & 1, \\ & & \\$$

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given $x_1, ..., x_{n-1}$ we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

-3,
$$\begin{bmatrix} 7, -2, 1, \\ x_i \end{bmatrix}$$
 -8, $\begin{bmatrix} 6, -2 \\ x_k \end{bmatrix}$

Say $x_i, ..., x_j$ is the maximum-sum and $x_k, ..., x_{n-1}$ is the maximum-sum suffix subsequences.

• If $x_k + \dots + x_{n-1} + x_n > x_i + \dots + x_j$ then x_k, \dots, x_n will be the new maximum-sum subsequence

Are we done?

Updating Max Suffix Subsequence

-3, 7, -2, 1, -8,
$$\begin{bmatrix} 6, & -2, \\ x_n \end{bmatrix}$$

Say $x_k, ..., x_{n-1}$ is the maximum-sum suffix subsequences of $x_1, ..., x_{n-1}$.

- If $x_k + \cdots + x_n \ge 0$ then, x_k, \dots, x_n is the new maximum-sum suffix subsequence
- Otherwise,
 The new maximum-sum suffix is the empty string.

Maximum Sum Subsequence ALG

```
Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {
   if (x[i] + U > S)
       S = x[i] + U
    if (x[i] + U > 0)
       U = x[i] + U
    else
       U = 0
Output S.
```

-3 7 -2 1 -8 6 -2 4

39

Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose

- $x_i, ..., x_j$ is the max-sum-subseq of $x_1, ..., x_{n-1}$
- x_k, \dots, x_{n-1} is the max-suffix-sum-sub of x_1, \dots, x_{n-1}

Ind Step: Suppose $x_a, ..., x_b$ is the max-sum-subseq of $x_1, ..., x_n$

Case 1 (b < n): $x_a, ..., x_b$ is also the max-sum-subseq of $x_1, ..., x_{n-1}$ So, a = i, b = j and the algorithm correctly outputs OPT

Case 2 (b = n): We must have $x_a, ..., x_{b-1}$ is the max-suff-sum of $x_1, ..., x_{n-1}$. If not, then

$$x_k + \dots + x_{n-1} > x_a + \dots + x_{n-1}$$

So, $x_k + \cdots + x_n > x_a + \cdots + x_b$ which is a contradiction.

Therefore, a = k and the algorithm correctly outputs OPT

Special Cases (You don't need to mention if follows from above):

- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose

- $x_i, ..., x_j$ is the max-sum-subseq of $x_1, ..., x_{n-1}$
- x_k, \dots, x_{n-1} is the max-suffix-sum-sub of x_1, \dots, x_{n-1}

Ind Step: Suppose $x_a, ..., x_n$ is the max-suffix-sum-subseq of $x_1, ..., x_n$ Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have $x_k + \cdots + x_n < 0$. So the algorithm correctly finds max-suffix-sum subsequence.

Case 2 (x_a , ..., x_n is nonempty): We must have $x_a + \cdots + x_n \ge 0$. Also, x_a , ..., x_{n-1} must be the max-suffix-sum of x_1 , ..., x_{n-1} . If not, $x_a + \cdots + x_{n-1} < x_k + \cdots + x_{n-1}$ which implies $x_a + \cdots + x_n < x_k + \cdots + x_n$ which is a contradiction.

Therefore, a=k. So, the algorithm correctly finds max-suffix-sum subsequence.

Summary

- Try to reduce an instance of size n to smaller instances
 - Never solve a problem twice
- Before designing an algorithm study properties of optimum solution

 If ordinary induction fails, you may need to strengthen the induction hypothesis