CSE 421

Alg Design by Induction, Dynamic Programming

Shayan Oveis Gharan

Q/A

- How to practice more?
- Try more exercises: there are lots of exercise in the book
- See https://train.usaco.org/usacogate
- How to think, how to write?
- Many cases it is better to spend more time on thinking than writing.
- Try to write concise proofs for HW problems.
- Make sure you use all assumptions of the problem.

Sample Soln of Problem 2 Midterm

In HW2-P3 we designed an algorithm to find the shortest path in a graph with weights $\{1,2,3\}$ where we break edge of weight w_{e} into a path of length w_{e}. Since all edge weights have the positive integer weights, we can run the same algorithm to construct a modified graph G'. Solve problem on G' by DFS.
Runtime: Since sum of edge weights is at most $4 \mathrm{~m} \mathrm{G}^{\prime}$ has $\mathrm{O}(\mathrm{m})$ edges and $\mathrm{O}(\mathrm{m}+\mathrm{n})$ vertices so the algorithm runs in $\mathrm{O}(\mathrm{m}+\mathrm{n})$.
Correctness: Similar to HW there is a bijection between all paths from s to a vertex v in G, G', where we substitute each edge e with a path of length w_{e}. Therefore, the shortest path from s to v in G,G' are the same (for all v). The algorithm works since BFS finds the shortest path.

Sample Soln of Problem 3 Midterm

Run the algorithm form P4 of Sample midterm except whenever comparing $A[1]$ with I compare $A[I] / 2$ with I and go to left if $A[1] / 2>1$ and right if $A[I] / 2<1$. Runtime: Similar to sample midterm we have the recursion $T(n)=T(n / 2)+O(1)$, So, $T(n)=O(\log n)$.

Proof of correctness: Construct an array B where $B[i]=A[i] / 2$ (note that this is just for sake of analysis). Since A has distinct and sorted elements, array B elements are distinct and sorted. Furthermore, since elements of A are even, elements of B are integers. Our modifiied algorithm above is essentially running the algorithm from sample midterm on B. Since B is sorted and has distinct integers by the same proof the algorithm succeeds.

Approximation Alg Summary

- To design approximation Alg, always find a way to lower bound OPT
- The best known approximation Alg for vertex cover is the greedy.
- It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2
- The best known approximation Alg for set cover is the greedy.
- It is NP-Complete to obtain better than In n approximation ratio for set cover.

Single Source Shortest Path

Given an (un)directed graph $G=(V, E)$ with non-negative edge weights $c_{e} \geq 0$
and a start vertex s

Find length of shortest paths from s to each vertex in G

Dijkstra(s)

- Set all vertices v undiscovered, $d(v)=\infty$ Set $d(s)=0$, mark s discovered. while there is edge from discovered vertex to undiscovered vertex,
- let (u, v) be such edge minimizing

$$
d(u)+c_{u, v}
$$

- set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+l_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$
set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$
set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+l_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Dijkstra's Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u, v) be such edge minimizing $d(u)+c_{u, v}$ set $d(v)=d(u)+c_{u, v}$, mark v discovered

Disjkstra's Algorithm: Correctness

Let S be the set of discovered vertices, $\mathrm{P}(\mathrm{k})={ }^{-}|\mathrm{If}| S \mid=k$, then for all discovered vertices $v \in S, d(v)$ is the shortest path from s to v. Base Case: This is always true when $S=\{s\}$.
$\mathrm{IH}: \mathrm{P}(\mathrm{k})$ holds
IS: Say v is the $\mathrm{k}+1$-st vertex that
we discover using edge (u, v) and we set

$$
d(v)=d(u)+c_{u, v} \mathbf{s}
$$

Call the path to v, P_{v}. If P_{v} is not the Shortest path, there is a shorter path P Consider the first time that P leaves S (say with edge (x,y)).
S -> x has weight (at least) $d(x)$

So, $c(P) \geq d(x)+c_{x, y} \geq d(u)+c_{u, v}=d(v)=c\left(P_{v}\right)$.
A contradiction.

Remarks on Dijkstra's Algorithm

- Algorithm also produces a tree of shortest paths to s following Parent links
- Algorithm works on directed graph (with nonnegative weights)
- The algorithm fails with negative edge weights.
- e.g., some airline tickets

Why does it fail?

- Dijkstra's algorithm is similar to BFS:
- Subtitute every edge with $c_{e}=k$ with a path of length k , then run BFS.

Implementing Dijkstra's Algorithm

Priority Queue: Elements each with an associated key Operations

- Insert
- Find-min
- Return the element with the smallest key
- Delete-min
- Return the element with the smallest key and delete it from the data structure
- Decrease-key
- Decrease the key value of some element

Implementations
Arrays:

- $O(n)$ time find/delete-min,
- O(1) time insert/decrease key

Binary Heaps:

- O(log n) time insert/decrease-key/delete-min,
- $\mathrm{O}(1)$ time find-min

Dijkstra's Algorithm

Runs in $\mathrm{O}((n+m) \log n)$.

```
Dijkstra(G, c, s) {
    foreach (v G V) d[v] \leftarrow \infty //This is the key of node v
    d[s]}\leftarrow
    foreach (v \in V) insert v onto a priority queue Q
    Initialize set of explored nodes S \leftarrow {s}
    while (Q is not empty) {
        u }\leftarrow\mathrm{ delete min element from Q
        S}\leftarrowS\cup{u
        foreach (edge e = (u, v) incident to u)
            if ((v & S) and (d[u]+ce< < d[v]))
                d[v]}\leftarrowd[u]+\mp@subsup{c}{e}{
                Decrease key of v to d[v].
                Parent(v)
}
                O(n) of delete min,
            foreach (edge e = (u,v) incident to u) each in O(log n)
                O(m) of decrease key,
                each runs in O(\operatorname{log}n)
```

Algorithm Design by Induction

Maximum Consecutive Subsequence

Problem: Given a sequence x_{1}, \ldots, x_{n} of integers (not necessarily positive),
Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

$$
\begin{array}{llllll|lll}
1 & -3 & 7 & -2 & -3 & 8 & -10 & 1 & -7
\end{array}
$$

Applications: Figuring out the highest interest rate period in stock market

Brute Force Approach

Try all consecutive subsequences of the input sequence.
There are $\binom{n}{2}=\Theta\left(n^{2}\right)$ such sequences.
We can compute the sum of numbers in each such sequence in $O(n)$ steps.

So, the ALG runs in $O\left(n^{3}\right)$.
With a clever loop we can do this in $O\left(n^{2}\right)$.
But, can we solve in linear time?

First Attempt (Induction)

Suppose we can find the maximum-sum subsequence of x_{1}, \ldots, x_{n-1}. Say it is x_{i}, \ldots, x_{j}

- If $x_{n}<0$ then it does not belong to the largest subsequence. So, we can output x_{i}, \ldots, x_{j}
- Suppose $x_{n}>0$.
- If $j=n-1$ then x_{i}, \ldots, x_{n} is the maximum-sum subsequence.
- If $j<n-1$ there are two possibilities

1) x_{i}, \ldots, x_{j} is still the maximum-sum subsequence
2) A sequence x_{k}, \ldots, x_{n} is the maximum-sum subseqence

$$
-3, \begin{array}{|cc|}
\hline 7,-2,1,-8,6,-2 \text {, 気 } 4 \\
\hline x_{n-1} \text { 离 } x_{n}
\end{array}
$$

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given x_{1}, \ldots, x_{n-1} we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

$$
-3, \begin{array}{|cc|}
\hline 7, & -2, \\
x_{i} & 1, \\
x_{j}
\end{array}-8, \frac{6,}{6}-2
$$

Say x_{i}, \ldots, x_{j} is the maximum-sum and x_{k}, \ldots, x_{n-1} is the maximum-sum suffix subsequences.

- If $x_{k}+\cdots+x_{n-1}+x_{n}>x_{i}+\cdots+x_{j}$ then x_{k}, \ldots, x_{n} will be the new maximum-sum subsequence

Are we done?

Updating Max Suffix Subsequence

$$
-3,7,-2,1,-8,6,-2, \sum_{x_{n}}^{\geqslant} 4
$$

Say x_{k}, \ldots, x_{n-1} is the maximum-sum suffix subsequences of x_{1}, \ldots, x_{n-1}.

- If $x_{k}+\cdots+x_{n} \geq 0$ then,
x_{k}, \ldots, x_{n} is the new maximum-sum suffix subsequence
- Otherwise,

The new maximum-sum suffix is the empty string.

Maximum Sum Subsequence ALG

```
Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {
    if (x[i] + U > S)
        S = x[i] + U
    if (x[i] + U > 0)
        U = x[i] + U
    else
        U = 0
}
Output S.
```

$$
\begin{array}{llllllll}
-3 & 7 & -2 & 1 & -8 & 6 & -2 & 4
\end{array}
$$

Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose

- x_{i}, \ldots, x_{j} is the max-sum-subseq of x_{1}, \ldots, x_{n-1}
- x_{k}, \ldots, x_{n-1} is the max-suffix-sum-sub of x_{1}, \ldots, x_{n-1}

Ind Step: Suppose x_{a}, \ldots, x_{b} is the max-sum-subseq of x_{1}, \ldots, x_{n}
Case $1(b<n): x_{a}, \ldots, x_{b}$ is also the max-sum-subseq of x_{1}, \ldots, x_{n-1}
So, $a=i, b=j$ and the algorithm correctly outputs OPT
Case $2(b=n)$: We must have x_{a}, \ldots, x_{b-1} is the max-suff-sum of x_{1}, \ldots, x_{n-1}.
If not, then

$$
x_{k}+\cdots x_{n-1}>x_{a}+\cdots+x_{n-1}
$$

So, $x_{k}+\cdots+x_{n}>x_{a}+\cdots+x_{b}$ which is a contradiction.
Therefore, $a=k$ and the algorithm correctly outputs OPT
Special Cases (You don't need to mention if follows from above):

- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose

- x_{i}, \ldots, x_{j} is the max-sum-subseq of x_{1}, \ldots, x_{n-1}
- x_{k}, \ldots, x_{n-1} is the max-suffix-sum-sub of x_{1}, \ldots, x_{n-1}

Ind Step: Suppose x_{a}, \ldots, x_{n} is the max-suffix-sum-subseq of x_{1}, \ldots, x_{n} Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have $x_{k}+\cdots+x_{n}<0$. So the algorithm correctly finds max-suffix-sum subsequence.

Case $2\left(x_{a}, \ldots, x_{n}\right.$ is nonempty): We must have $x_{a}+\cdots+x_{n} \geq 0$. Also, x_{a}, \ldots, x_{n-1} must be the max-suffix-sum of x_{1}, \ldots, x_{n-1}. If not,

$$
x_{a}+\cdots+x_{n-1}<x_{k}+\cdots+x_{n-1}
$$

which implies $x_{a}+\cdots+x_{n}<x_{k}+\cdots+x_{n}$ which is a contradiction.
Therefore, $a=k$. So, the algorithm correctly finds max-suffix-sum subseqence.

Summary

- Try to reduce an instance of size n to smaller instances
- Never solve a problem twice
- Before designing an algorithm study properties of optimum solution
- If ordinary induction fails, you may need to strengthen the induction hypothesis

