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Q/A

• How to practice more?
• Try more exercises: there are lots of exercise in the book
• See https://train.usaco.org/usacogate

• How to think, how to write?
• Many cases it is better to spend more time on thinking than 

writing.
• Try to write concise proofs for HW problems.
• Make sure you use all assumptions of the problem.
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Sample Soln of Problem 2 Midterm

In HW2-P3 we designed an algorithm to find the 
shortest path in a graph with weights {1,2,3} where we 
break edge of weight 𝑤! into a path of length 𝑤!. Since 
all edge weights have the positive integer weights, we 
can run the same algorithm to construct a modified 
graph G’. Solve problem on G’ by DFS.
Runtime: Since sum of edge weights is at most 4m G’ 
has O(m) edges and O(m+n) vertices so the algorithm 
runs in O(m+n).
Correctness: Similar to HW there is a bijection
between all paths from s to a vertex v in G, G’, where 
we substitute each edge e with a path of length 𝑤! .
Therefore, the shortest path from s to v in G,G’ are the 
same (for all v). The algorithm works since BFS finds 
the shortest path.

3



Sample Soln of Problem 3 Midterm

Run the algorithm form P4 of Sample midterm except 
whenever comparing A[l] with l compare A[l]/2 with l 
and go to left if A[l]/2 > l and right if A[l]/2 < l.
Runtime: Similar to sample midterm we have the
recursion T(n)=T(n/2)+O(1), So, T(n)=O(log n).

Proof of correctness: Construct an array B where 
B[i]=A[i]/2 (note that this is just for sake of analysis).
Since A has distinct and sorted elements, array B 
elements are distinct and sorted. Furthermore, since 
elements of A are even, elements of B are integers. 
Our modifiied algorithm above is essentially running 
the algorithm from sample midterm on B. Since B is 
sorted and has distinct integers by the same proof the 
algorithm succeeds.
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Approximation Alg Summary
• To design approximation Alg, always find a way to lower 

bound OPT

• The best known approximation Alg for vertex cover is the 
greedy. 
– It has been open for 50 years to obtain a polynomial time 

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the 
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio 

for set cover. 



Single Source Shortest Path

Given an (un)directed graph 
G=(V,E) with  non-negative
edge weights 𝑐! ≥ 0
and a start vertex s

Find length of shortest paths 
from s to each vertex in G

UW
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Dijkstra(s)

• Set all vertices v undiscovered, 𝑑(𝑣) = ∞
Set 𝑑(𝑠) = 0, mark s discovered.
while there is edge from discovered vertex 
to undiscovered vertex, 

• let (u,v) be such edge minimizing 
𝑑(𝑢) + 𝑐!,#

• set 𝑑(𝑣) = 𝑑(𝑢) + 𝑐!,#, mark 𝑣 discovered 
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Disjkstra’s Algorithm: Correctness
Let S be the set of discovered vertices, P(k)=``If |𝑆| = 𝑘, then for 
all discovered vertices 𝑣 ∈ 𝑆, 𝑑(𝑣) is the shortest path from s to v.
Base Case: This is always true when 𝑆 = 𝑠 .
IH: P(k) holds
IS: Say 𝑣 is the k+1-st vertex that 
we discover using edge (u,v) and we set  

𝑑 𝑣 = 𝑑(𝑢) + 𝑐!,#
Call the path to v, 𝑃! . If 𝑃! is not the 
Shortest path, there is a shorter path 𝑃
Consider the first time that P leaves S
(say with edge (x,y)). 
S -> x has weight (at least) 𝑑(𝑥)
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐",$ ≥ 𝑑 𝑢 + 𝑐%,! = 𝑑 𝑣 = 𝑐 𝑃! .
A contradiction.

v

y

u

s
x

𝑃#

𝑃



Remarks on Dijkstra’s Algorithm
• Algorithm also produces a tree of shortest paths to s following 

Parent links
• Algorithm works on directed graph (with nonnegative weights)

• The algorithm fails with negative edge weights. 
• e.g., some airline tickets 

Why does it fail?

• Dijkstra’s algorithm is similar to BFS:
• Subtitute every edge with 𝑐$ = 𝑘 with a path of length k, then run BFS.



Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:   

• O(n) time find/delete-min,  
• O(1) time insert/decrease key    

Binary Heaps:
• O(log n) time insert/decrease-key/delete-min, 
• O(1) time find-min



Dijkstra’s Algorithm
Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v Î V) d[v] ¬ ¥ //This is the key of node v
𝒅 𝒔 ← 𝟎
foreach (v Î V) insert v onto a priority queue Q
Initialize set of explored nodes S ¬ {s}

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (d[u]+ce < d[v]))
𝒅 𝒗 ← 𝒅 𝒖 + 𝒄𝒆
Decrease key of v to d[v].
𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖

}

𝑂(𝑚) of decrease key, 
each runs in 𝑂(log 𝑛)

𝑂(𝑛) of delete min,
each in O(log n)



Algorithm Design by Induction



Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥-, … , 𝑥. of integers (not 
necessarily positive), 
Goal: Find a subsequence of consecutive elements s.t., the 
sum of its numbers is maximum.

1   -3    7   -2   -3    8   -10   1    -7

Applications: Figuring out the highest interest rate period in 
stock market
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Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are .
/ = Θ(𝑛/) such sequences. 

We can compute the sum of numbers in each such 
sequence in 𝑂 𝑛 steps.

So, the ALG runs in 𝑂(𝑛0).

With a clever loop we can do this in 𝑂 𝑛/ .
But, can we solve in linear time?
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First Attempt (Induction)
Suppose we can find the maximum-sum subsequence of 
𝑥-, … , 𝑥.1-. Say it is 𝑥2, … , 𝑥3

• If 𝑥. < 0 then it does not belong to the largest 
subsequence. So, we can output 𝑥2, … , 𝑥3

• Suppose 𝑥. > 0.
• If 𝑗 = 𝑛 − 1 then 𝑥4 , … , 𝑥5 is the maximum-sum 

subsequence.

• If 𝑗 < 𝑛 − 1 there are two possibilities
1) 𝑥$, … , 𝑥% is still the maximum-sum subsequence
2) A sequence 𝑥&, … , 𝑥' is the maximum-sum subseqence

-3,   7,   -2,  1,   -8,   6,   -2,        

35
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Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥-, … , 𝑥.1- we can compute 
the maximum-sum subsequence, and the maximum-sum 
suffix subsequence.

-3,   7,  -2,  1,  -8,  6,  -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥6, … , 𝑥.1- is the 
maximum-sum suffix subsequences.

• If 𝑥6 +⋯+ 𝑥.1- + 𝑥. > 𝑥2 +⋯+ 𝑥3 then 𝑥6, … , 𝑥. will be 
the new maximum-sum subsequence

36

𝑥$ 𝑥% 𝑥& 𝑥'()Can be empty



Are we done?

37



Updating Max Suffix Subsequence

Say 𝑥6, … , 𝑥.1- is the maximum-sum suffix subsequences 
of 𝑥-, … , 𝑥.1-.

• If 𝑥6 +⋯+ 𝑥. ≥ 0 then, 
𝑥6, … , 𝑥. is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.
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Maximum Sum Subsequence ALG

39

Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3       7       -2       1        -8        6       -2       4



Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose 
• 𝑥$, … , 𝑥% is the max-sum-subseq of 𝑥), … , 𝑥'()
• 𝑥&, … , 𝑥'() is the max-suffix-sum-sub of 𝑥), … , 𝑥'()

Ind Step: Suppose 𝑥*, … , 𝑥+ is the max-sum-subseq of 𝑥), … , 𝑥'

Case 1 (𝑏 < 𝑛): 𝑥*, … , 𝑥+ is also the max-sum-subseq of 𝑥), … , 𝑥'()
So, 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥*, … , 𝑥+() is the max-suff-sum of 
𝑥), … , 𝑥'().
If not, then

𝑥& +⋯𝑥'() > 𝑥* +⋯+ 𝑥'()
So, 𝑥& +⋯+ 𝑥' > 𝑥* +⋯+ 𝑥+ which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT

40

Special Cases (You don’t need to mention if follows from above): 
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.



Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose 
• 𝑥$, … , 𝑥% is the max-sum-subseq of 𝑥), … , 𝑥'()
• 𝑥&, … , 𝑥'() is the max-suffix-sum-sub of 𝑥), … , 𝑥'()

Ind Step: Suppose 𝑥*, … , 𝑥' is the max-suffix-sum-subseq of 𝑥), … , 𝑥'
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then,  we must have 𝑥& +⋯+ 𝑥' < 0. So the 
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥*, … , 𝑥' is nonempty): We must have 𝑥* +⋯+ 𝑥' ≥ 0. 
Also, 𝑥*, … , 𝑥'() must be the max-suffix-sum of 𝑥), … , 𝑥'(). If not, 

𝑥* +⋯+ 𝑥'() < 𝑥& +⋯+ 𝑥'()
which implies 𝑥* +⋯+ 𝑥' < 𝑥& +⋯+ 𝑥' which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum 
subseqence.
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Summary

• Try to reduce an instance of size n to smaller instances
• Never solve a problem twice

• Before designing an algorithm study properties of 
optimum solution

• If ordinary induction fails, you may need to strengthen 
the induction hypothesis
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