CSE 421

Alg Design by Induction,
Dynamic Programming

Shayan Oveis Gharan

Q/A

 How to practice more?
« Try more exercises: there are lots of exercise in the book
« See https://train.usaco.org/usacogate

 How to think, how to write?
 Many cases it is better to spend more time on thinking than
writing.
* Try to write concise proofs for HW problems.
« Make sure you use all assumptions of the problem.

Sample Soln of Problem 2 Midterm

In HW2-P3 we designed an algorithm to find the
shortest path in a graph with weights {1,2,3} where we
break edge of weight w,, into a path of length w,. Since
all edge weights have the positive integer weights, we
can run the same algorithm to construct a modified
graph G'. Solve problem on G’ by DFS.

Runtime: Since sum of edge weights is at most 4m G’
has O(m) edges and O(m+n) vertices so the algorithm
runs in O(m+n).

Correctness: Similar to HW there is a bijection
between all paths from s to a vertex vin G, G, where
we substitute each edge e with a path of length w,.
Therefore, the shortest path from s to vin G,G" are the
same (for all v). The algorithm works since BFS finds
the shortest path.

Sample Soln of Problem 3 Midterm

Run the algorithm form P4 of Sample midterm except
whenever comparing A[l] with | compare A[l]/2 with |
and go to left if A[l}/2 > 1 and right if A[l}/2 <.

Runtime: Similar to sample midterm we have the
recursion T(n)=T(n/2)+0O(1), So, T(n)=0O(log n).

Proof of correctness: Construct an array B where
B[i]=AJi]/2 (note that this is just for sake of analysis).
Since A has distinct and sorted elements, array B
elements are distinct and sorted. Furthermore, since
elements of A are even, elements of B are integers.
Our modifiled algorithm above is essentially running
the algorithm from sample midterm on B. Since B is
sorted and has distinct integers by the same proof the
algorithm succeeds.

Approximation Alg Summary

* To design approximation Alg, always find a way to lower
bound OPT

« The best known approximation Alg for vertex cover is the
greedy.

— It has been open for 50 years to obtain a polynomial time
algorithm with approximation ratio better than 2

« The best known approximation Alg for set cover is the
greedy.

— Itis NP-Complete to obtain better than In n approximation ratio
for set cover.

Single Source Shortest Path

Given an (un)directed graph
G=(V,E) with non-negative
edge weights ¢, = 0

and a start vertex s

Find length of shortest paths
from s to each vertex in G

Amazo

UW

Dijkstra(s)

» Set all vertices v undiscovered, d(v) = oo
Set d(s) = 0, mark s discovered.
while there is edge from discovered vertex
to undiscovered vertex,
* let (u,v) be such edge minimizing
d(u) + cyy

* setd(v) = d(u) + ¢, ,, mark v discovered

Dijkstra’s Algorithm

-
me O
4 4
1
7,
3
g
-~

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + L, v
set d(v) = d(u) + ¢,,, mark v discovered

u,vlt

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢,
set d(v) = d(u) + ¢,,, mark v discovered

uv/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + c,,
set d(v) = d(u) + ¢,,, mark v discovered

uyv/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢,
set d(v) = d(u) + ¢,,, mark v discovered

uv/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + c,,
set d(v) = d(u) + ¢,,, mark v discovered

uyv/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + c,,
set d(v) = d(u) + ¢,,, mark v discovered

uyv/

Dijkstra’s Algorithm

> (=
:

3

C ‘
:
B

A5

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢,
set d(v) = d(u) + c,,, mark v discovered

u,v/

Dijkstra’s Algorithm

> (=
:

3

TP ¢
8

A5

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢, ,,
set d(v) = d(u) + c,,, mark v discovered

u,v/

Dijkstra’s Algorithm

/[

)

A5

9

8

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + L, v
set d(v) = d(u) + c,,, mark v discovered

uv/

Dijkstra’s Algorithm

~

b

—f
9

8

]

A5

S

—

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢, ,,
set d(v) = d(u) + c,,, mark v discovered

u,v/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢, ,,
set d(v) = d(u) + c,,, mark v discovered

uv/

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u, v) be such edge minimizing d(u) + ¢, ,,
set d(v) = d(u) + c,,, mark v discovered

uv/

Dijkstra’s Algorithm

while there isede
let (u, v) be such edge :
setd(v) = d(u) +c,,, mark v dlscovered

Dijkstra’s Algorithm

while there isede
let (u, v) be such edge :
setd(v) = d(u) +c,,, mark v dlscovered

Dijkstra’s Algorithm

while there isede
let (u, v) be such edge :
setd(v) = d(u) +c,,, mark v dlscovered

Dijkstra’s Algorithm

while there isede
let (u, v) be such edge :
setd(v) = d(u) +c,,, mark v dlscovered

Dijkstra’s Algorithm

while there is €dc
let (u, v) be such edge minimizing d(u) + ¢, ,
set d(v) = d(u) + c,,, mark v discovered

Disjkstra’s Algorithm: Correctness

Let S be the set of discovered vertices, P(k)=""If |S| = k, then for
all discovered vertices v € S, d(v) is the shortest path from s to v.

Base Case: This is always true when S = {s}.
IH: P(k) holds
|S: Say v is the k+1-st vertex that

we discover using edge (u,v) and we set
d(v) =d) + cyy |

Call the path to v, B,. If P, is not the
Shortest path, there is a shorter path P
Consider the first time that P leaves S
(say with edge (x,y)).

S -> x has weight (at least) d(x)

S0, c(P) =2d(x) + ¢y =du) + ¢y = d) = c(B).
A contradiction.

Remarks on Dijkstra’s Algorithm

« Algorithm also produces a tree of shortest paths to s following
Parent links

« Algorithm works on directed graph (with nonnegative weights)

« The algorithm fails with negative edge weights.
* e.g., some airline tickets

Why does it fail?

« Dijkstra’s algorithm is similar to BFS:
Subtitute every edge with c, = k with a path of length k, then run BFS.

Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations
* Insert
* Find-min

— Return the element with the smallest key

* Delete-min

— Return the element with the smallest key and delete it from the data structure

« Decrease-key

— Decrease the key value of some element

Implementations
Arrays:
* O(n) time find/delete-min,
« O(1) time insert/decrease key

Binary Heaps:
* O(log n) time insert/decrease-key/delete-min,
* O(1) time find-min

Dijkstra’s Algorithm

Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v € V) d[v] « o //This is the key of node v
d[s] < 0
foreach (v € V) insert v onto a priority queue Q
Initialize set of explored nodes S « {s}

while (Q is not empty) {
u < delete min element from Q O(TL) of delete min

=g e o each in O(log n)
foreach (edge e = (u, v) incident to u)
if ((v ¢ S) and (d[u]l+c. < d[Vv]))
d[v] « d[u] + c,
Decrease key of v to d[v].
Parent(v) <

0 (m) of decrease key,
each runs in O(logn)

Algorithm Design by Induction

Maximum Consecutive Subsequence

Problem: Given a sequence x4, ..., x,, of integers (not
necessarily positive),

Goal: Find a subsequence_ of consecutive elements s.t., the
sum of its numbers is maximum.

1 3|7 2 3 810 1 -7

Applications: Figuring out the highest interest rate period in
stock market

33

Brute Force Approach

Try all consecutive subsequences of the input sequence.
There are () = ©(n?) such sequences.

We can compute the sum of numbers in each such
sequence in 0(n) steps.

So, the ALG runs in 0(n?).

With a clever loop we can do this in 0(n?).
But, can we solve in linear time?

34

First Attempt (Induction)

Suppose we can find the maximum-sum subsequence of
X1y ey Xp—1. SAY IS X, ..., X;

- If x,, < 0 then it does not belong to the largest
subsequence. So, we can output x;, ..., x;

* Suppose x,, > 0.

 Ifj=n-1thenx;, ..., x, is the maximum-sum
subsequence.

« If j <n —1there are two possibilities
1) x;, ..., x; is still the maximum-sum subsequence
2) A sequence xy, ..., X, is the maximum-sum subsegence

A
3,[7. 2, 1,86, -2, % 4]
xn—la Xn

35

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given x4, ..., x,_; we can compute
the maximum-sum subsequence, and the maximum-sum
suffix subsequence.

\ 3,17, -2, 1,|-8,/6, -2
Can be empty .

Say x;, ..., xj Is the maximum-sum and xy, ..., x,,_ is the
maximum-sum suffix subsequences.

o Ifxp+ - +x,9 +x,>x+ -+ x; then xy, ..., x, will be
the new maximum-sum subsequence

36

Are we done?

NO GOD PLEASE

Nﬂ%ﬂﬂﬂﬂﬂﬂﬂ

37

Updating Max Suffix Subsequence

-3, 7, -2, 1, -8, |6, -2,

%

4

Xn

say xy, ..., x,—1 is the maximum-sum suffix subsequences

of X1y veery Xn—1-

e Ifx, + -+ x, = 0 then,

Xy, -, Xy IS the new maximum-sum suffix subsequence

 Otherwise,

The new maximum-sum suffix is the empty string.

38

Maximum Sum Subsequence ALG

Initialize S=0 (Sum of numbers in Maximum Subseq)

Initialize U=0 (Sum of numbers in Maximum Suffix)

for (i=1] to n) {
if (x[i] + U > S)
S = x[i] + U

if (x[1i] + U > 0)
U= x[1] + U
else
U=20
}
Output S.

-3 7 -2 1 -8

39

Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose
* Xj,..,x; is the max-sum-subseq of x,, ..., x,_1
* X, .., Xp—q1 IS the max-suffix-sum-sub of x4, ..., x;,_1

Ind Step: Suppose x4, ..., xp is the max-sum-subseq of x4, ..., x5,

Case 1 (b < n): xg4, ..., xp IS also the max-sum-subseq of x4, ..., x,,—1
So, a = i,b = j and the algorithm correctly outputs OPT

Case 2 (b = n): We must have x,, ..., x,_1 is the max-suff-sum of
X1y eeny Xpy—1-
If not, then

X+ Xp1 > Xqg+ o+ x4
So, x; + -+ x, > x, + -+ + x,, which is a contradiction.
Therefore, a = k and the algorithm correctly outputs OPT

Special Cases (You don’t need to mention if follows from above):
« The max-suffix-sum is empty string
« There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose
* Xj,..,x; is the max-sum-subseq of x,, ..., x,_1
* X, .., Xp—q1 IS the max-suffix-sum-sub of x4, ..., x;,_1

Ind Step: Suppose xg, ..., x,, is the max-suffix-sum-subseq of x4, ..., x,
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have x; + - + x,, < 0. So the
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (xg, ..., x,, Is nonempty): We must have x; + -+ x,, = 0.

Also, x,, ..., x,—1 must be the max-suffix-sum of x4, ..., x,,—1. If not,
Xg+ ot X < X+t X_q

which implies x, + -+ + x,, < x; + --- + x,, which is a contradiction.

Therefore, a = k. So, the algorithm correctly finds max-suffix-sum
subsegence.

41

Summary

* Try to reduce an instance of size n to smaller instances
Never solve a problem twice

« Before designing an algorithm study properties of
optimum solution

 If ordinary induction fails, you may need to strengthen
the induction hypothesis

42

