
CSE 421

Alg Design by Induction,
Dynamic Programming

Shayan Oveis Gharan

1

Q/A

• How to practice more?
• Try more exercises: there are lots of exercise in the book
• See https://train.usaco.org/usacogate

• How to think, how to write?
• Many cases it is better to spend more time on thinking than

writing.
• Try to write concise proofs for HW problems.
• Make sure you use all assumptions of the problem.

2

Sample Soln of Problem 2 Midterm

In HW2-P3 we designed an algorithm to find the
shortest path in a graph with weights {1,2,3} where we
break edge of weight 𝑤! into a path of length 𝑤!. Since
all edge weights have the positive integer weights, we
can run the same algorithm to construct a modified
graph G’. Solve problem on G’ by DFS.
Runtime: Since sum of edge weights is at most 4m G’
has O(m) edges and O(m+n) vertices so the algorithm
runs in O(m+n).
Correctness: Similar to HW there is a bijection
between all paths from s to a vertex v in G, G’, where
we substitute each edge e with a path of length 𝑤! .
Therefore, the shortest path from s to v in G,G’ are the
same (for all v). The algorithm works since BFS finds
the shortest path.

3

Sample Soln of Problem 3 Midterm

Run the algorithm form P4 of Sample midterm except
whenever comparing A[l] with l compare A[l]/2 with l
and go to left if A[l]/2 > l and right if A[l]/2 < l.
Runtime: Similar to sample midterm we have the
recursion T(n)=T(n/2)+O(1), So, T(n)=O(log n).

Proof of correctness: Construct an array B where
B[i]=A[i]/2 (note that this is just for sake of analysis).
Since A has distinct and sorted elements, array B
elements are distinct and sorted. Furthermore, since
elements of A are even, elements of B are integers.
Our modifiied algorithm above is essentially running
the algorithm from sample midterm on B. Since B is
sorted and has distinct integers by the same proof the
algorithm succeeds.

4

Approximation Alg Summary
• To design approximation Alg, always find a way to lower

bound OPT

• The best known approximation Alg for vertex cover is the
greedy.
– It has been open for 50 years to obtain a polynomial time

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio

for set cover.

Single Source Shortest Path

Given an (un)directed graph
G=(V,E) with non-negative
edge weights 𝑐! ≥ 0
and a start vertex s

Find length of shortest paths
from s to each vertex in G

UW

Amazon

Dijkstra(s)

• Set all vertices v undiscovered, 𝑑(𝑣) = ∞
Set 𝑑(𝑠) = 0, mark s discovered.
while there is edge from discovered vertex
to undiscovered vertex,

• let (u,v) be such edge minimizing
𝑑(𝑢) + 𝑐!,#

• set 𝑑(𝑣) = 𝑑(𝑢) + 𝑐!,#, mark 𝑣 discovered

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

Dijkstra’s Algorithm

0

∞

∞

∞

∞

∞

∞

∞

∞

∞

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

∞

∞

∞

∞

∞

∞

∞

∞

∞

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

∞

∞

∞

∞

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

∞

∞

∞

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑙𝑢, 𝑣
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

3

∞

∞

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

3

∞

∞

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

3

∞

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

∞

∞

∞

∞

3

∞

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

∞

∞

∞

3

∞

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

∞

∞

∞

3

∞

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

∞

∞

∞

3

∞

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

Dijkstra’s Algorithm

0

2

7

∞

∞

∞

3

8

5

∞

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑙𝑢, 𝑣
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

∞

∞

∞

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

∞

∞

∞

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

∞

∞

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

∞

∞

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

∞

12

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

∞

12

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

13

12

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑(𝑢) + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

s b

c

d
a

e

g

f

j

h

12

2

5

1

1 4

2

1

5

6

3

4

2

2

0

2

7

11

13

12

3

8

5

10

while there is edge from discovered vertex to undiscovered vertex,
let (𝑢, 𝑣) be such edge minimizing 𝑑 𝑢 + 𝑐!,#
set 𝑑 𝑣 = 𝑑 𝑢 + 𝑐!,#, mark v discovered

Dijkstra’s Algorithm

Disjkstra’s Algorithm: Correctness
Let S be the set of discovered vertices, P(k)=``If |𝑆| = 𝑘, then for
all discovered vertices 𝑣 ∈ 𝑆, 𝑑(𝑣) is the shortest path from s to v.
Base Case: This is always true when 𝑆 = 𝑠 .
IH: P(k) holds
IS: Say 𝑣 is the k+1-st vertex that
we discover using edge (u,v) and we set

𝑑 𝑣 = 𝑑(𝑢) + 𝑐!,#
Call the path to v, 𝑃! . If 𝑃! is not the
Shortest path, there is a shorter path 𝑃
Consider the first time that P leaves S
(say with edge (x,y)).
S -> x has weight (at least) 𝑑(𝑥)
So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐",$ ≥ 𝑑 𝑢 + 𝑐%,! = 𝑑 𝑣 = 𝑐 𝑃! .
A contradiction.

v

y

u

s
x

𝑃#

𝑃

Remarks on Dijkstra’s Algorithm
• Algorithm also produces a tree of shortest paths to s following

Parent links
• Algorithm works on directed graph (with nonnegative weights)

• The algorithm fails with negative edge weights.
• e.g., some airline tickets

Why does it fail?

• Dijkstra’s algorithm is similar to BFS:
• Subtitute every edge with 𝑐$ = 𝑘 with a path of length k, then run BFS.

Implementing Dijkstra’s Algorithm
Priority Queue: Elements each with an associated key Operations

• Insert
• Find-min

– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations
Arrays:

• O(n) time find/delete-min,
• O(1) time insert/decrease key

Binary Heaps:
• O(log n) time insert/decrease-key/delete-min,
• O(1) time find-min

Dijkstra’s Algorithm
Runs in O((n+m)log n).

Dijkstra(G, c, s) {
foreach (v Î V) d[v] ¬ ¥ //This is the key of node v
𝒅 𝒔 ← 𝟎
foreach (v Î V) insert v onto a priority queue Q
Initialize set of explored nodes S ¬ {s}

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (d[u]+ce < d[v]))
𝒅 𝒗 ← 𝒅 𝒖 + 𝒄𝒆
Decrease key of v to d[v].
𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖

}

𝑂(𝑚) of decrease key,
each runs in 𝑂(log 𝑛)

𝑂(𝑛) of delete min,
each in O(log n)

Algorithm Design by Induction

Maximum Consecutive Subsequence

Problem: Given a sequence 𝑥-, … , 𝑥. of integers (not
necessarily positive),
Goal: Find a subsequence of consecutive elements s.t., the
sum of its numbers is maximum.

1 -3 7 -2 -3 8 -10 1 -7

Applications: Figuring out the highest interest rate period in
stock market

33

Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are .
/ = Θ(𝑛/) such sequences.

We can compute the sum of numbers in each such
sequence in 𝑂 𝑛 steps.

So, the ALG runs in 𝑂(𝑛0).

With a clever loop we can do this in 𝑂 𝑛/ .
But, can we solve in linear time?

34

First Attempt (Induction)
Suppose we can find the maximum-sum subsequence of
𝑥-, … , 𝑥.1-. Say it is 𝑥2, … , 𝑥3

• If 𝑥. < 0 then it does not belong to the largest
subsequence. So, we can output 𝑥2, … , 𝑥3

• Suppose 𝑥. > 0.
• If 𝑗 = 𝑛 − 1 then 𝑥4 , … , 𝑥5 is the maximum-sum

subsequence.

• If 𝑗 < 𝑛 − 1 there are two possibilities
1) 𝑥$, … , 𝑥% is still the maximum-sum subsequence
2) A sequence 𝑥&, … , 𝑥' is the maximum-sum subseqence

-3, 7, -2, 1, -8, 6, -2,

35

4

𝑥'𝑥'()

Second Attempt (Strengthing Ind Hyp)

Stronger Ind Hypothesis: Given 𝑥-, … , 𝑥.1- we can compute
the maximum-sum subsequence, and the maximum-sum
suffix subsequence.

-3, 7, -2, 1, -8, 6, -2

Say 𝒙𝒊, … , 𝒙𝒋 is the maximum-sum and 𝑥6, … , 𝑥.1- is the
maximum-sum suffix subsequences.

• If 𝑥6 +⋯+ 𝑥.1- + 𝑥. > 𝑥2 +⋯+ 𝑥3 then 𝑥6, … , 𝑥. will be
the new maximum-sum subsequence

36

𝑥$ 𝑥% 𝑥& 𝑥'()Can be empty

Are we done?

37

Updating Max Suffix Subsequence

Say 𝑥6, … , 𝑥.1- is the maximum-sum suffix subsequences
of 𝑥-, … , 𝑥.1-.

• If 𝑥6 +⋯+ 𝑥. ≥ 0 then,
𝑥6, … , 𝑥. is the new maximum-sum suffix subsequence

• Otherwise,
The new maximum-sum suffix is the empty string.

38

-3, 7, -2, 1, -8, 6, -2, 4
𝑥'

Maximum Sum Subsequence ALG

39

Initialize S=0 (Sum of numbers in Maximum Subseq)
Initialize U=0 (Sum of numbers in Maximum Suffix)
for (i=1 to n) {

if (x[i] + U > S)
S = x[i] + U

if (x[i] + U > 0)
U = x[i] + U

else
U = 0

}
Output S.

-3 7 -2 1 -8 6 -2 4

Pf of Correct: Maximum Sum Subseq
Ind Hypo: Suppose
• 𝑥$, … , 𝑥% is the max-sum-subseq of 𝑥), … , 𝑥'()
• 𝑥&, … , 𝑥'() is the max-suffix-sum-sub of 𝑥), … , 𝑥'()

Ind Step: Suppose 𝑥*, … , 𝑥+ is the max-sum-subseq of 𝑥), … , 𝑥'

Case 1 (𝑏 < 𝑛): 𝑥*, … , 𝑥+ is also the max-sum-subseq of 𝑥), … , 𝑥'()
So, 𝑎 = 𝑖, 𝑏 = 𝑗 and the algorithm correctly outputs OPT

Case 2 (𝑏 = 𝑛): We must have 𝑥*, … , 𝑥+() is the max-suff-sum of
𝑥), … , 𝑥'().
If not, then

𝑥& +⋯𝑥'() > 𝑥* +⋯+ 𝑥'()
So, 𝑥& +⋯+ 𝑥' > 𝑥* +⋯+ 𝑥+ which is a contradiction.
Therefore, 𝑎 = 𝑘 and the algorithm correctly outputs OPT

40

Special Cases (You don’t need to mention if follows from above):
• The max-suffix-sum is empty string
• There are multiple maximum sum subsequences.

Pf of Correct: Max-Sum Suff Subseq
Ind Hypo: Suppose
• 𝑥$, … , 𝑥% is the max-sum-subseq of 𝑥), … , 𝑥'()
• 𝑥&, … , 𝑥'() is the max-suffix-sum-sub of 𝑥), … , 𝑥'()

Ind Step: Suppose 𝑥*, … , 𝑥' is the max-suffix-sum-subseq of 𝑥), … , 𝑥'
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have 𝑥& +⋯+ 𝑥' < 0. So the
algorithm correctly finds max-suffix-sum subsequence.

Case 2 (𝑥*, … , 𝑥' is nonempty): We must have 𝑥* +⋯+ 𝑥' ≥ 0.
Also, 𝑥*, … , 𝑥'() must be the max-suffix-sum of 𝑥), … , 𝑥'(). If not,

𝑥* +⋯+ 𝑥'() < 𝑥& +⋯+ 𝑥'()
which implies 𝑥* +⋯+ 𝑥' < 𝑥& +⋯+ 𝑥' which is a contradiction.

Therefore, 𝑎 = 𝑘. So, the algorithm correctly finds max-suffix-sum
subseqence.

41

Summary

• Try to reduce an instance of size n to smaller instances
• Never solve a problem twice

• Before designing an algorithm study properties of
optimum solution

• If ordinary induction fails, you may need to strengthen
the induction hypothesis

42

