CSE 421

Approximation Alg

Shayan Oveis Gharan

Midterm

Congratulations! You did great in the midterm Median ~ 81%

- I did terrible in midterm, can I still get 3.9 or 4.0? Yes!
- If you are way below median below 50% try harder Final will be harder

Mid-quarter evaluations

- HW problems are too hard for me
 - We have resources to prepare for HW (problem solving section, OH, etc.). You can also practice with exercises in the book.
 - Difficult HW problems make you prepared for real world algorithm design problems
- Grading rules are too strict
 - Every week I spent hours to train TAs how to grade. The welldefined rubric is my effort to have a systematic grading guidelines that all TAs can follow. Without it everybody grades arbitrarily.
 - Everything is not about grade! We are here to learn.
- TAs have not responded to my re-grade requests
 - Send me an email or come to OH, I'll look into your request
- What is the point of this course after all? Why do you have to prove correctness of an algorithm?
 - Often algorithms that we design are incorrect.

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems in real world are NP-complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time. What to do instead?

- Find optimum solution of special cases (e.g., random inputs)
- Find near optimum solution in the worst case

Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

$$\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}}$$

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph G=(V,E), Find smallest set of vertices touching every edge

Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q:Does this give an optimum solution?

A: No,

Greedy Vertex cover = 20

OPT Vertex cover = 8

n vertices. Each vertex has one edge into each B_i

Each vertex in B_i has i edges to top

Greedy pick bottom vertices =
$$n + \frac{n}{2} + \frac{n}{3} + \dots + 1 \approx n \ln n$$

OPT pick top vertices = n

A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6

Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \dots, e_k . Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \ge k$.

But the size of greedy cover is 2k. So, Greedy is a 2-approximation.

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has In n approximation ratio

Greedy Gives O(log(n)) approximation

Thm: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose OPT=k

There is set that covers 1/k fraction of remaining elements, since there are k sets that cover all remaining elements.

So in each step, algorithm will cover 1/k fraction of remaining elements.

#elements uncovered after t steps

$$\leq n\left(1-\frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.

Approximation Alg Summary

- To design approximation Alg, always find a way to lower bound OPT
- The best known approximation Alg for vertex cover is the greedy.
 - It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2

- The best known approximation Alg for set cover is the greedy.
 - It is NP-Complete to obtain better than In approximation ratio for set cover.

Single Source Shortest Path

Given an (un)directed graph G=(V,E) with non-negative edge weights $c_e \ge 0$ and a start vertex s

Find length of shortest paths from s to each vertex in G

Dijkstra(s)

- Set all vertices v undiscovered, d(v) = ∞
 Set d(s) = 0, mark s discovered.
 while there is edge from discovered vertex to undiscovered vertex,
- let (u,v) be such edge minimizing $d(u) + c_{u,v}$
- set $d(v) = d(u) + c_{u,v}$, mark v discovered