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Midterm
Congratulations! You did great in the midterm
Median ~ 81%
• I did terrible in midterm, can I still get 3.9 or 4.0? Yes!
• If you are way below median below 50% try harder
Final will be harder
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Mid-quarter evaluations
• HW problems are too hard for me

• We have resources to prepare for HW (problem solving section, 
OH, etc.). You can also practice with exercises in the book.

• Difficult HW problems make you prepared for real world algorithm 
design problems

• Grading rules are too strict
• Every week I spent hours to train TAs how to grade. The well-

defined rubric is my effort to have a systematic grading guidelines 
that all TAs can follow. Without it everybody grades arbitrarily.

• Everything is not about grade! We are here to learn.
• TAs have not responded to my re-grade requests

• Send me an email or come to OH, I’ll look into your request
• What is the point of this course after all? Why do you 

have to prove correctness of an algorithm?
• Often algorithms that we design are incorrect. 



Approximation Algorithms



Many of the important problems in real world are NP-
complete. 
SAT, Set Cover, Graph Coloring, TSP, Max IND Set, 
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.
What to do instead?

• Find optimum solution of special cases (e.g., random 
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem



Polynomial-time  Algorithms with a guaranteed 
approximation ratio.

𝛼 =
Cost of computed solution
Cost of the optimum

worst case over all instances. 

Goal: For each NP-hard problem find an approximation 
algorithm with the best possible approximation ratio.

Approximation Algorithm



Given a graph G=(V,E), Find smallest set of vertices 
touching every edge 

Vertex Cover



Greedy algorithms are typically used in practice to find a 
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most 
new edges

Q:Does this give an optimum solution?
A: No, 

Greedy Algorithm?



Greedy (1): Pick vertex that covers the most
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Greedy (1): Pick vertex that covers the most
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Greedy Vertex cover = 20
OPT Vertex cover = 8



Greedy (1): Pick vertex that covers the most

|𝐵%| = 𝑛/𝑖𝐵& 𝐵"𝐵&'"

𝑛 vertices. Each vertex has one edge into each 𝐵%

Greedy pick bottom vertices = 𝑛 + &
!
+ &

#
+⋯+ 1 ≈ 𝑛 ln 𝑛

OPT pick top vertices = n

Each vertex in 𝐵! has 𝑖 edges to top



Greedy 2: Iteratively, pick both endpoints of an uncovered 
edge.

A Different Greedy Rule

Vertex cover = 6



Greedy 2: Pick Both endpoints of an 
uncovered edge 

𝐵!𝐵" 𝐵#
𝐵$

Greedy vertex cover = 16

OPT vertex cover = 8



Thm: Size of greedy (2) vertex cover is at most twice as big 
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒#, … , 𝑒$.
Since these edges do not touch, every valid cover must pick 
one vertex from each of these edges! 

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 

e.g., a company wants to hire employees with certain 
skills.   



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 
Set cover = 4



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
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A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio



A Tight Example for Greedy
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A Tight Example for Greedy

OPT = 2Greedy = 5



Thm: If the best solution has k sets, greedy finds at most k 
ln(n) sets.

Pf: Suppose OPT=k 
There is set that covers 1/k fraction of remaining elements, 
since there are k sets that cover all remaining elements. 
So in each step, algorithm will cover 1/k fraction of 
remaining elements.

#elements uncovered after t steps 

≤ 𝑛 1 −
1
𝑘

𝑡 ≤ 𝑛𝑒%
&
$

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation



Approximation Alg Summary
• To design approximation Alg, always find a way to lower 

bound OPT

• The best known approximation Alg for vertex cover is the 
greedy. 
– It has been open for 50 years to obtain a polynomial time 

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the 
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio 

for set cover. 



Single Source Shortest Path

Given an (un)directed graph 
G=(V,E) with  non-negative
edge weights 𝑐' ≥ 0
and a start vertex s

Find length of shortest paths 
from s to each vertex in G

UW

Amazon



Dijkstra(s)

• Set all vertices v undiscovered, 𝑑(𝑣) = ∞
Set 𝑑(𝑠) = 0, mark s discovered.
while there is edge from discovered vertex 
to undiscovered vertex, 

• let (u,v) be such edge minimizing 
𝑑(𝑢) + 𝑐!,#

• set 𝑑(𝑣) = 𝑑(𝑢) + 𝑐!,#, mark 𝑣 discovered 


