CSE 421

Approximation Alg

Shayan Oveis Gharan

Midterm

Congratulations! You did great in the midterm

Median ~ 81%

» | did terrible in midterm, can | still get 3.9 or 4.0? Yes!
* If you are way below median below 50% try harder
Final will be harder

35

30
25
20
15

- el

10
[32,40.5] (40.5,49] (49,57.5] (57.5,66] (66,74.5] (74.5,83] (83,91.5]

Mid-quarter evaluations

HW problems are too hard for me

« We have resources to prepare for HW (problem solving section,
OH, etc.). You can also practice with exercises in the book.

« Difficult HW problems make you prepared for real world algorithm
design problems

Grading rules are too strict

« Every week | spent hours to train TAs how to grade. The well-
defined rubric is my effort to have a systematic grading guidelines
that all TAs can follow. Without it everybody grades arbitrarily.

« Everything is not about grade! We are here to learn.

TAs have not responded to my re-grade requests
« Send me an email or come to OH, I'll look into your request

What is the point of this course after all? Why do you
have to prove correctness of an algorithm?
« Often algorithms that we design are incorrect.

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems in real world are NP-
complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set,
Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time.
What to do instead?

« Find optimum solution of special cases (e.g., random
inputs)

* Find near optimum solution in the worst case

Approximation Algorithm

Polynomial-time Algorithms with a guaranteed
approximation ratio.

Cost of computed solution

a =
Cost of the optimum

worst case over all instances.

Goal: For each NP-hard problem find an approximation
algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph G=(V,E), Find smallest set of vertices
touching every edge

Greedy Algorithm?

Greedy algorithms are typically used in practice to find a
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most
new edges

Q:Does this give an optimum solution?
A: No,

" \ 4/
// > K
LR

RN

o, /4\'/)'//’/ //

’ o/’"/ R ;,ﬂ/
4> V«I’J/WZ%V
. ﬂ//vh//,

Greedy (1): Pick vertex that covers the most

AN ‘ D RON //
\y b® \J ’(//»/4
RN
/»OW)/Z////
AN N\ 1Y

Greedy (1): Pick vertex that covers the most

LN
A7/ "S>\
\il\\ SON
(<
\ @
@

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

AAAx

Greedy (1): Pick vertex that covers the most

/| {/ 74 V
iaYeha
K AL
IR

] "V «‘
i
$

258
%7\
By B B3

\/

.
,

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

&

Greedy (1): Pick vertex that covers the most

SA

V] 4/)

2

4’/.%4@

B
Greedy Vertex cover = 20

N/ \ 'y
AR

=8

OPT Vertex cover

Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B;

...... ceccce
e N 090%%,
B, Bn-1 |B;| = n/i B,

Each vertex in B; has i edges to top

Greedy pick bottom vertices = n + g + 2 +--+1=nlnn

OPT pick top vertices = n

A Different Greedy Rule

Greedy 2: lteratively, pick both endpoints of an uncovered
edge.

Vertex cover = 6

Greedy 2: Pick Both endpoints of an

M SSK

N

y/, ‘1
2N ,/
N m v’").\'\uf

uncovered edge

Greedy vertex cover = 16

=8

OPT vertex cover

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf. Suppose Greedy (2) picks endpoints of edges ey, ..., ey.

Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!

l.e., OPT > k.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Set Cover

Given a number of sets on a ground set of elements,
Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain
skills.

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has In n approximation ratio

A Tight Example for Greedy

A Tight Example for Greedy

f

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

Greedy =5 OPT =2
p

Greedy Gives O(log(n)) approximation

Thm: If the best solution has k sets, greedy finds at most k
In(n) sets.

Pf. Suppose OPT=k

There is set that covers 1/k fraction of remaining elements,
since there are k sets that cover all remaining elements.

So in each step, algorithm will cover 1/k fraction of
remaining elements.

#elements uncovered after t steps
t

1
< n(1-1)r <neh
Tl(2 ne

So after t = kInn steps, # uncovered elements < 1.

Approximation Alg Summary

* To design approximation Alg, always find a way to lower
bound OPT

« The best known approximation Alg for vertex cover is the
greedy.

— It has been open for 50 years to obtain a polynomial time
algorithm with approximation ratio better than 2

« The best known approximation Alg for set cover is the
greedy.

— Itis NP-Complete to obtain better than In n approximation ratio
for set cover.

Single Source Shortest Path

Given an (un)directed graph
G=(V,E) with non-negative
edge weights ¢, = 0

and a start vertex s

Find length of shortest paths
from s to each vertex in G

Amazo

UW

Dijkstra(s)

» Set all vertices v undiscovered, d(v) = oo
Set d(s) = 0, mark s discovered.
while there is edge from discovered vertex
to undiscovered vertex,
* let (u,v) be such edge minimizing
d(u) + cyy

* setd(v) = d(u) + ¢, ,, mark v discovered

