CSE 421

Divide and Conquer: Integer
Multiplication

Shayan Oveis Gharan

Master Theorem

Suppose T(n) =aT (%) + cn® for alln > b. Then,
e Ifa>b*thenTn) = @(nlogb“)

» Ifa < b* then T(n) = 8(n*)

* If a = b* then T(n) = ©(n*logn)

Works even if it is [ﬂ instead of --.
Wealsoneeda>1,b>1,k=0and T(n) = 0(1) forn < b.

Proving Master Theorem

Problem size T(n) =aT(n/b)+cn* #probs cost

" ‘ a s 1 cnk
nb S o o o a c-a-nkbk
8) W“. ~. : “.
n/b2 1 e © o0 © @ 22 c-aZnkbz
'O : . o“ : . o“
S S =c-nk(a/bk)?
b o ’ o o o
s o ", s o ", Ak k\d
1 | A o b e g c-n¥(a/bX)

A Useful ldentity

d+1 _
Theorem: 1+ x +x%+ -+ x% = xx—l =
Pf:LetS =1+ x + x? + -+ x¢
Then, xS = x + x? + -+ + x@*1
So, xS—S =x%1_1
e, S(x—1) =x%1 -1
Therefore,

xd+1 —1

x—1

Solve: T(n) = aT (%) + cn®, a > b"

logpbn , g\
_ k _—
T(n) =cn zi:o (bk)

(I;Lk) alogb n

N\ —

<+

nk
- C(bklogbn> (i)—l

bk

xd+1_1

a
p— for x = K

d =log,n
using x # 1

<c alogb n — O(Tllogb a)

N

alogb n

— (blogb a)logb n
— (blogb n)logb a
— nlogb a

Solve: T(n) = aT (g) + cn®, a = b"

logpn , q \1i
_ k —_
T(n) =cn Eizo (b")

= cn®log, n

Master Theorem

Suppose T(n) =aT (%) + cn® for alln > b. Then,
e Ifa>b*thenTn) = @(nlogb“)

» Ifa < b* then T(n) = 8(n*)

* If a = b* then T(n) = ©(n*logn)

Works even if it is [ﬂ instead of --.
Wealsoneeda>1,b>1,k=0and T(n) = 0(1) forn < b.

Median

Selecting k-th smallest

Problem: Given numbers x4, ...,x, and aninteger1 <k <n
output the k-th smallest number

Sel({xq, ..., xn }, k)

A simple algorithm: Sort the numbers in time O(n log n) then
return the k-th smallest in the array.

Can we do better?
Yes,intime O(n) ifk =1ork = 2.
Can we do 0(n) for all possible values of k?

Assume all numbers are distinct for simplicity.

An ldea

Choose a number w from x4, ..., x,

Define .

© Sc(w) = txpix; <wj Can be computed in
e S-(Ww)={x;:x;=w} linear time

o So(w)={x;:x; >w}

J
Solve the problem recursively as follows:

o Ifk < |Sc.(w)|, output Sel(S.(w), k)
 Elseifk <|Sc(w)|+ |S=(w)|, output w

« Else output Sel(Ss(w), k — |Sc(w)| — |S=(W)])

|deally want [S_(w)], |Ss(w)| < n/2. In this case ALG runs in
o(n) +0 (g) +0 (%) +-4+0(1) =00).

How to choose w?

Suppose we choose w uniformly at random
similar to the pivot in quicksort.

Then, E[[Sc(w)|] = E[|Ss(w)]] = n/2. Algorithm runs in O(n) in
expectation.

Can we get O(n) running time deterministically?
* Partition numbers into sets of size 3.

« Sort each set (takes O(n))

e w = Sel(midpoints,n/6)

0||0/|0|0||©|©|]©®|0®|®| 0| 0|®|®|®
VIV v velf e v v v v e el ve v ff v
ol|lo|o|o|O|O|_ ||O®|®|®|]|O®|]®|®]|®
viffvifiviffviibveffve v v five ffve e lfve f| vi [v
0||0/|0|0||©|©|]©®|0®|®| 0| 0|®|®|®

How to lower bound [S.(w)], |Ss(w)]?

> W

e Is<ml = 2(3) =3 > §S|S<(w)|,|s><w>|s%"
s Isml=2(3) =3

So, what is the running time?

Asymptotic Running Time?

|®@ <i.< o]

If kK < |S.(w)|, output Sel(S.(w), k)
Else if k < [Sc(W)]| + |S=(w)|, output w
Else output Sel(Ss(w),k — S.(w) — S_-(w))

O(nlog n) again?
So, what is the point?

Where

w|S

2
< |S<(W)|; |S>(W)| < ?n

T(n) =T (g) + T (Z?n) +0(Mn) =Tn) =0(nlogn)

An Improved |ldea

> w
®o| |0 |O ® o |O|||®]| |O| |O] |O]| |O®
V V Y% V V V V \Y; Vv V V
| |0 |O® o o |0|]|]|®| || |®| |®]| |©®
‘V' ‘V' ‘V' \4 \4 L V V V V V V
o|c|o|<|o|<|®|c|@| |{e|<|ec|e|0<|0
V V V \Y \Y vV V \V \V/ \V val
| |0 |© o ®|||O®| |®| |©| || |O®]| |®
\ V V V V V V V V V V
®o| |0 |O® o ®|||0] |O®| || |®| |®]| |©®
<w

Partition into n/5 sets. Sort each set and set w = Sel(midpoints,n/10)

n
~ 10 ScW)|, [Ss(W)| < —
10 ‘ < 1S< W)L IS> W)l < 75

() +0(n) = T(n) = 0(n)

An Improved |ldea

Sel(S, k) {
n < |S|
If (n < ??) return ?°?
Partition S into n/5 sets of size 5
Sort each set of size 5 and let M be the set of medians, so
IM|=n/5
Let w=Sel (M,n/10)
For i=1 to n{ We can maintain each
If x;<w add x to S_.(w) / set in an array
If x;>w add x to S.(w)
If x;=w add x to S_(w)
}
If (k<|S<(W)]
return Sel(S_(w) k)
else if (k<|[S_-(W)|+|S_-(W)])
return w;
else
return Sel(S-(w), k—|[S-(W)|—|S-(w)])

D&C Summary

|dea:
“Two halves are better than a whole”
« if the base algorithm has super-linear complexity.
“If a little's good, then more's better”
 repeat above, recursively
* Applications: Many.
« Binary Search, Merge Sort, (Quicksort),
* Root of a Function
* Closest points,
* Integer multiplication
 Median
« Matrix Multiplication

In-class Exercise

Prove that every amount of postage of 12 cents or more
can be formed using just 4-cents and 5-cents stamps.

For example 12=4+4+4.

17

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems in real world are NP-
complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set,
Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time.
What to do instead?

« Find optimum solution of special cases (e.g., random
inputs)

* Find near optimum solution in the worst case

Approximation Algorithm

Polynomial-time Algorithms with a guaranteed
approximation ratio.

Cost of computed solution

a =
Cost of the optimum

worst case over all instances.

Goal: For each NP-hard problem find an approximation
algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph G=(V,E), Find smallest set of vertices
touching every edge

Greedy Algorithm?

Greedy algorithms are typically used in practice to find a
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most
new edges

Q:Does this give an optimum solution?
A: No,

" \ 4/
// > K
LR

RN

o, /4\'/)'//’/ //

’ o/’"/ R ;,ﬂ/
4> V«I’J/WZ%V
. ﬂ//vh//,

Greedy (1): Pick vertex that covers the most

AN ‘ D RON //
\y b® \J ’(//»/4
RN
/»OW)/Z////
AN N\ 1Y

Greedy (1): Pick vertex that covers the most

LN
A7/ "S>\
\il\\ SON
(<
\ @
@

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

AAAx

Greedy (1): Pick vertex that covers the most

/| {/ 74 V
iaYeha
K AL
IR

] "V «‘
i
$

258
%7\
By B B3

\/

.
,

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

&

Greedy (1): Pick vertex that covers the most

SA

V] 4/)

2

4’/.%4@

B
Greedy Vertex cover = 20

N/ \ 'y
AR

=8

OPT Vertex cover

Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B;

...... ceccce
e N 090%%,
B, Bn-1 |B;| = n/i B,

Each vertex in B; has i edges to top

Greedy pick bottom vertices = n + g + 2 +--+1=nlnn

OPT pick top vertices = n

A Different Greedy Rule

Greedy 2: lteratively, pick both endpoints of an uncovered
edge.

Vertex cover = 6

Greedy 2: Pick Both endpoints of an

M SSK

N

y/, ‘1
2N ,/
N m v’").\'\uf

uncovered edge

Greedy vertex cover = 16

=8

OPT vertex cover

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf. Suppose Greedy (2) picks endpoints of edges ey, ..., ey.

Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!

l.e., OPT > k.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

