
CSE 421

Divide and Conquer: Finding Root
Closest Pair of Points

Shayan Oveis Gharan

1

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log 𝑛

Works even if it is !" instead of !" .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log 𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏# and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

Finding the Closest Pair of Points

A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each side.
Conquer: find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions

12

21
8

L

seems like
Q(n2) ?

Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y

coordinate.

12

21

L

d=12

7

1

2

3

4
5

6

Only check pts within 11 in sorted list!

Almost 1D Problem
Partition each side of L into !

"
× !
"

squares

Claim: No two points lie in the same !
"
× !
"

box.
Pf: Such points would be within

!
"

"
+ !

"

"
= 𝛿 #

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate
among points in the 2𝛿-width-strip.

Claim: If 𝑖 − 𝑗 > 11, then the distance
between si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si).

d

29
30

31

28

26

25

d

½d

½d

39

i

j

27

29

>
𝛿

Recap: Finding Closest Pair

So, enough to check distance
Distance of 30 to 19…41.

d

29
30

31

28

26

25

d

½d

½d

42

i 27

33
>
𝛿

32

34

35
3637

At most 11 points
ahead of 30 have

distance < 𝛿 from it.

Sorted based on y

Point 42 has distance at
least 2𝛿 from point 30.

Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
if(n <= ??) return ??

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for i = 1..m
for k = 1…11
if i+k <= m

d = min(d, distance(p[i], p[i+k]));

return d.
}

Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in
the Closest-Pair Algorithm when run on n ³ 1 points

𝐷 𝑛 ≤ :
1 if 𝑛 = 1
2𝐷

𝑛
2 + 11 𝑛 o.w. ⇒ 𝐷 𝑛 = O(𝑛log 𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ :
1 if 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) o.w. ⇒ 𝐷 𝑛 = O(𝑛log(𝑛)

Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.

This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ :
1 if 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 o.w. ⇒ 𝐷 𝑛 = 𝑂(𝑛 log 𝑛)

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log 𝑛

Works even if it is !" instead of !" .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log 𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏# and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

Integer Multiplication

Integer Arithmetic
Add: Given two n-bit integers
a and b, compute a + b.

Multiply: Given two n-bit
integers a and b, compute a × b.
The “grade school” method:

15

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

100000000001011

1

0

1

1

1

1

1

0

*

Multiply

00000000

O(n) bit operations.

𝑂(𝑛") bit operations.

How to use Divide and Conquer?
Suppose we want to multiply two 2-digit integers (32,45).
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

Same idea works when multiplying n-digit integers:
• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions

5

2

4

3

0441

01

80

51

21

x0×y0

x0×y1

x1×y0

x1×y1

x1 x0

y1 y0

𝑥 = 10𝑥# + 𝑥$
𝑦 = 10𝑦# + 𝑦$
𝑥𝑦 = 10𝑥# + 𝑥$ 10𝑦# + 𝑦$

= 100 𝑥#𝑦# + 10 𝑥#𝑦$ + 𝑥$𝑦# + 𝑥$𝑦$

A Divide and Conquer for Integer Mult
Let 𝑥, 𝑦 be two n-bit integers
Write 𝑥 = 2!/(𝑥* + 𝑥+ and 𝑦 = 2!/(𝑦* + 𝑦+

where 𝑥+, 𝑥*, 𝑦+, 𝑦* are all n/2-bit integers.

Therefore,
𝑇 𝑛 = 4𝑇

𝑛
2
+ Θ(𝑛)

So,
𝑇 𝑛 = Θ 𝑛(.

𝑥 = 2%/" ⋅ 𝑥# + 𝑥$
𝑦 = 2%/" ⋅ 𝑦# + 𝑦$
𝑥𝑦 = 2%/" ⋅ 𝑥# +𝑥$ 2%/" ⋅ 𝑦# + 𝑦$

= 2% ⋅ 𝑥#𝑦# + 2 ⁄% " ⋅ 𝑥#𝑦$ + 𝑥$𝑦# + 𝑥$𝑦$
We only need 3 values
𝑥!𝑦!, 𝑥"𝑦", 𝑥!𝑦" + 𝑥"𝑦!

Can we find all 3 by only
3 multiplication?

Key Trick: 4 multiplies at the price of 3

𝑥 = 2%/" ⋅ 𝑥# + 𝑥$
𝑦 = 2%/" ⋅ 𝑦# + 𝑦$
𝑥𝑦 = 2%/" ⋅ 𝑥# +𝑥$ 2%/" ⋅ 𝑦# + 𝑦$

= 2% ⋅ 𝑥#𝑦# + 2 ⁄% " ⋅ 𝑥#𝑦$ + 𝑥$𝑦# + 𝑥$𝑦$

𝛼 = 𝑥# + 𝑥$
𝛽 = 𝑦# + 𝑦$
𝛼𝛽 = 𝑥# + 𝑥$ 𝑦# + 𝑦$

= 𝑥#𝑦# + 𝑥#𝑦$ + 𝑥$𝑦# + 𝑥$𝑦$
𝑥#𝑦$ + 𝑥$𝑦# = 𝛼𝛽 − 𝑥#𝑦# − 𝑥$𝑦$

Key Trick: 4 multiplies at the price of 3
Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585…) bit operations.

To multiply two n-bit integers:
Add two n/2 bit integers.
Multiply three n/2-bit integers.
Add, subtract, and shift n/2-bit integers to obtain result.

𝑇 𝑛 = 3𝑇
𝑛
2
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂 𝑛$%&" 0 = 𝑂(𝑛*.232…)

𝑥 = 2%/" ⋅ 𝑥# + 𝑥$ ⇒ 𝛼 = 𝑥# + 𝑥$
𝑦 = 2%/" ⋅ 𝑦# + 𝑦$ ⇒ 𝛽 = 𝑦# + 𝑦$
𝑥𝑦 = 2%/" ⋅ 𝑥# +𝑥$ 2%/" ⋅ 𝑦# + 𝑦$

= 2% ⋅ 𝑥#𝑦# + 2 ⁄% " ⋅ 𝑥#𝑦$ + 𝑥$𝑦# + 𝑥$𝑦$
A B𝛼𝛽 − 𝐴 − 𝐵

Integer Multiplication (Summary)
• Naïve: Θ(𝑛2)

• Karatsuba: Θ(𝑛*.232…)

• Amusing exercise: generalize Karatsuba to do 5 size
n/3 subproblems

This gives Θ 𝑛#.%&… time algorithm

• Best known algorithm runs in Θ(𝑛 log 𝑛) using fast Fourier
transform
but mostly unused in practice (unless you need really big numbers - a

billion digits of p, say)

• Best lower bound 𝑂(𝑛): A fundamental open problem

Proving Master Theorem

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

an
Problem size

n/b

n/b2

b

1

d=
lo
g b
n

probs

a2

a

1

ad

=c×nk(a/bk)2

cost
cnk

c×a×nk/bk

c×a2×nk/b2k

c×nk(a/bk)d

𝑇 𝑛 = 𝑐𝑛*9
+,$

-,./0# % 𝑎
𝑏*

+

A Useful Identity

Theorem: 1 + 𝑥 + 𝑥(+⋯+ 𝑥5 = 6#$%7*
67*

Pf: Let 𝑆 = 1 + 𝑥 + 𝑥(+⋯+ 𝑥5

Then, 𝑥𝑆 = 𝑥 + 𝑥(+⋯+ 𝑥58*

So, 𝑥𝑆 − 𝑆 = 𝑥58* − 1
i.e., 𝑆 𝑥 − 1 = 𝑥58* − 1
Therefore,

𝑆 =
𝑥58* − 1
𝑥 − 1

Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 > 𝑏#

𝑇 𝑛 = 𝑐𝑛#H
9:+

$%&! ! 𝑎
𝑏#

9

= 𝑐𝑛#
𝑎
𝑏#

$%&! !8*
− 1

𝑎
𝑏# − 1

$!"#%!
$%!

for 𝑥 = &
'$

𝑑 = log' 𝑛
using 𝑥 ≠ 1

≤ 𝑐
𝑛#

𝑏# $%&! !

𝑎
𝑏#
𝑎
𝑏# − 1

𝑎$%&! !

≤ 2𝑐 𝑎$%&! ! = 𝑂(𝑛$%&! ')

𝑏()*+% ,

= 𝑏)*+% , (

= 𝑛(
𝑎)*+% ,
= (𝑏)*+% &))*+% ,
= (𝑏)*+% ,))*+% &
= 𝑛)*+% &

Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 = 𝑏#

𝑇 𝑛 = 𝑐𝑛#H
9:+

$%&! ! 𝑎
𝑏#

9

= 𝑐𝑛# log" 𝑛

Master Theorem
Suppose 𝑇 𝑛 = 𝑎 𝑇 !

" + 𝑐𝑛# for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏# then 𝑇 𝑛 = Θ 𝑛$%&!'

• If 𝑎 < 𝑏# then 𝑇 𝑛 = Θ 𝑛#

• If 𝑎 = 𝑏# then 𝑇 𝑛 = Θ 𝑛#log 𝑛

Works even if it is !" instead of !" .

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

