
CSE 421

Union Find DS
Dijkstra’s Algorithm,

Shayan Oveis Gharan

1

Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpoint in S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

2

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.
Pf. By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
C crosses S even number of timesÞ there exists another edge,
say f, that leaves S.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

3

f

T*
e

S

u v

Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and
connects the components.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

4

f

T*
e

S

Kruskal’s Algorithm [1956]

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

Kruskal’s Algorithm: Pf of Correctness
Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to
cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

Union Find Data Structure
Each set is represented as a tree of pointers, where every vertex
is labeled with longest path ending at the vertex

To check whether A,Q are in same connected component, follow
pointers and check if root is the same.

vv

D,2

vv

A,1
vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

{A,B,C,D} {W,P,Q}

Union Find Data Structure
Merge: To merge two connected components, make the root
with the smaller label point to the root with the bigger label
(adjusting labels if necessary). Runs in O(1) time

vv

D,2

vv

A,1
vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

vv

D,2

vv

A,1 vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

vv

W,1

vv

Q,0

vv

D,1

vv

A,0

vv

W,2

vv

Q,0
vv

D,1

vv

A,0

At most one label
must be adjusted

Kruskal’s Algorithm with Union Find
Implementation. Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and O(m log n) for union-find

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

Find roots and compare

Merge at the roots

Depth vs Size
Claim: If the label of a root is k, there are at least 2, elements in
the set.
Therefore the depth of any tree in algorithm is at most log n

So, we can check if 𝑢, 𝑣 are in the
same component in time 𝑂(log 𝑛)

vv

D,2

vv

A,1 vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

Depth vs Size: Correctness
Claim: If the label of a root is k, there are at least 2, elements in
the set.

Pf: By induction on k.
Base Case (k = 0): this is true. The set has size 1.
IH: Suppose the claim is true until some time t
IS: If we merge roots with labels 𝑘- > 𝑘., the number of vertices
only increases while the label stays the same.
If 𝑘- = 𝑘., the merged tree has label 𝑘- + 1,
and by induction, it has at least

2,! + 2," = 2,!/-

elements.

Removing weight Distinction Assumption
Suppose edge weights are not distinct, and Kruskal’s algorithm
sorts edges so

𝑐0! ≤ 𝑐0" ≤ ⋯ ≤ 𝑐0#
Suppose Kruskal finds tree 𝑇 of weight 𝑐(𝑇), but the optimal
solution 𝑇∗ has cost 𝑐 𝑇∗ < 𝑐 𝑇 .

Perturb each of the weights by a very small amount so that
𝑐!!
" < 𝑐!"

" < ⋯ < 𝑐!#
"

where 𝑐0$
1 = 𝑐0$ + 𝑖. 𝜖

If 𝜖 is small enough, 𝑐1 𝑇∗ < 𝑐(𝑇).
However, this contradicts the correctness of Kruskal’s algorithm,
since the algorithm will still find 𝑇, and Kruskal’s algorithm is
correct if all weights are distinct.

Summary (Greedy Algorithms)

• Greedy Stays Ahead: Interval Scheduling, Dijkstra’s
algorithm

• Structural: Interval Partitioning

• Exchange Arguments: MST, Kruskal’s Algorithm,

• Data Structures: Union Find, Heap

Divide and Conquer Approach

Divide and Conquer
Similar to algorithm design by induction, we reduce a

problem to several subproblems.
Typically, each sub-problem is

at most a constant fraction of
the size of the original problem

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to n/2

merge

Why Balanced Partitioning?
An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:
𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛#)

D&C: The Key Idea
Suppose we've already invented Bubble-Sort, and we know
it takes 𝑛#

Try just one level of divide & conquer:

Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time: 2 𝑇(𝑛/2) + 𝑛 = 𝑛2/2 + 𝑛 ≪ 𝑛2

Almost twice as fast!

D&C in a
nutshell

D&C approach
• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:
.1𝑛 . + .9𝑛 . + 𝑛 = .82𝑛2 + 𝑛

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but
with a bigger constant.

• This is why Quicksort with random splitter is good – badly
unbalanced splits are rare, and not instantly fatal.

Finding the Root of a Function

Finding the Root of a Function
Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where there is 𝑟 s.t.,
𝑟 − 𝑐 ≤ 𝜖 and 𝑓 𝑟 = 0).

Note 𝑓 has a root in [𝑎, 𝑏] by
intermediate value theorem

Note that roots of 𝑓 may be irrational,
So, we want to approximate
the root with an arbitrary precision! a b

f 𝑥 = sin 𝑥 − "##
$
+ 𝑥%

A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 = $%&
' intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂($%&')

Can we do faster?

a b

D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if 𝑏 − 𝑎 < 𝝐 then
return (a)

else
𝑚 ← (𝑎 + 𝑏)/2
if 𝑓 𝑚 ≤ 0 then

return(Bisection(c, b, e))
else

return(Bisection(a, c, e))

a bc

Time Analysis
Let 𝑛 = &%$

'
And 𝑐 = (𝑎 + 𝑏)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,

𝑇 𝑛 = 𝑇 (
+ 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log &%$') a bc
n/2n/2

Correctness Proof
P(k) = “For any 𝑎, 𝑏 such that 𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ (𝑘 + 1)𝜖 if
𝑓 𝑎 𝑓 𝑏 ≤ 0, then we find an 𝜖 approx to a root using log 𝑘
queries to 𝑓”

Base Case: P(1): Output 𝑎 + 𝜖
IH: Assume P(k).

IS: Show P(2k). Consider an arbitrary 𝑎, 𝑏 s.t.,
2𝑘𝜖 ≤ 𝑎 − 𝑏 < 2𝑘 + 1 𝜖

If 𝑓 𝑎 + 𝑘𝜖 = 0 output 𝑎 + 𝑘𝜖.
If 𝑓 a 𝑓 𝑎 + 𝑘𝜖 < 0, solve for interval 𝑎, 𝑎 + 𝑘𝜖 using log(k)
queries to f.
Otherwise, we must have 𝑓 𝑏 𝑓 𝑎 + 𝑘𝜖 < 0 since 𝑓 𝑎 𝑓 𝑏 < 0
and 𝑓 𝑎 𝑓 𝑎 + 𝑘𝜖 ≥ 0. Solve for interval 𝑎 + 𝑘𝜖, 𝑏.
Overall we use at most log(𝑘) + 1 = log(2𝑘) queries to f.

