CSE 421

Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan

An Advice on Problem Solving

If possible, try not to use arguments of the following type in
proofs:

 The Bestcase s

e The worstcase is

These arguments need rigorous justification, and they are
usually the main reason that your proofs can become
wrong, or unjustified.

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?
c ci f i
b | g i
, a_ I e h
9 930 10 1030 1 1130, 12 1230 1 130 2 230 3 330 4 430

Time 3

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that s; < s, < ... < s,.
d «< 0

for j =1 to n {
if (lect j is compatible with some classroom k, 1< k<d)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¢« d+1

Implementation: Exercise!

Correctness

Observation: Greedy algorithm never schedules two
Incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job,
say |, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time s(j) + €, i.e.
depth > d

“OPT Observation” = all schedules use > depth classrooms,
so d = depth and greedy is optimal -

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph ¢ = (V, E) with real-valued edge
weights c., an MST is a subset of the edges T < E such that

T is a spanning tree whose sum of edge weights is
minimized.

4/‘

57(%7# P
P J

G = (V,E) ¢(T) =) o =50

eeT

/

.

Cuts

In a graph ¢ = (V,E) a cut is a bipartition of V into sets S,V — §
forsome S € V. We show it by (§,V —5)

An edge e = {u, v}isin the cut (S,V —5) if exactly one of u,vis in
S.

S V-S

Obs: If G is connected then there is at least one edge in every
cut.

Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even
number of times.

Pf. (by picture)

Properties of the OPT

Simplifying assumption: All edge costs c, are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpointin S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

7

2\./0

5

red edge is in the MST Green edge is not in the MST
10

Cut Property: Proof

Simplifying assumption: All edge costs c, are distinct.

Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.

Pf. By contradiction
Suppose e = {u,v} does not belong to T*.

Adding e to T* creates a cycle C in T™.

C crosses S even number of times=> there exists another edge,
say f, that leaves S.

T = T*u{e} — {f}is also a spanning tree.
Since ¢, < ¢, c(T) < c(T").
This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs c, are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T".
Deleting f from T* cuts T* into two connected components.

There exists another edge, say e, that is in the cycle and
connects the components.

T =T "u{e} — {f}is also a spanning tree.
Since ¢, < c;, c(T) < c(T").
This is a contradiction.

Kruskal's Algorithm [1956]

Kruskal (G, c) {

Sort edges weights so that c; < ¢, <
T<0o

IA
N
3

foreach (u€V) make a set containing singleton {u}

for i =1 tom
Let (u,v) = e;
if (u and v are in different sets) {
T « TU{ei}
merge the sets containing u and v

}

return T

Kruskal’'s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding e to T creates a cycle, discard e according to
cycle property.

Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1 Case 2

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.
« Build set T of edges in the MST.
« Maintain a set for each connected component.
 O(m log n) for sorting and O(m log n) for union-find

Kruskal (G, c) {

Sort edges weights so that c; < c;, < ...
T<0o

IA
N
3

foreach (u€V) make a set containing singleton {u}

for i =1 tom
Let (u,v) = e;
if (u and v are in different sets) {
T « TU{ei}
merge the sets containing u and v

}

return T

