
CSE 421

Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan

1

An Advice on Problem Solving

If possible, try not to use arguments of the following type in
proofs:

• The Best case is ….

• The worst case is ….

These arguments need rigorous justification, and they are
usually the main reason that your proofs can become
wrong, or unjustified.

2

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed ³ depth.

Ex: Depth of schedule below = 3 Þ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

3Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Implementation: Exercise!
4

Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¬ d + 1

}

Correctness

Observation: Greedy algorithm never schedules two
incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).
Thus, we have d lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e.

depth ³ d
“OPT Observation” Þ all schedules use ³ depth classrooms,
so d = depth and greedy is optimal ▪ 5

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph 𝐺 = (𝑉, 𝐸) with real-valued edge
weights ce, an MST is a subset of the edges 𝑇 ⊆ 𝐸 such that
𝑇 is a spanning tree whose sum of edge weights is
minimized.

7

5

23

10
21

14

24

16

6

4

18
9

7

11
8

𝐺 = (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 =*
!∈#

𝑐! = 50

Cuts

In a graph 𝐺 = (𝑉, 𝐸) a cut is a bipartition of V into sets 𝑆, 𝑉 − 𝑆
for some 𝑆 ⊆ 𝑉. We show it by (𝑆, 𝑉 − 𝑆)

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of u,v is in
S.

Obs: If G is connected then there is at least one edge in every
cut. 8

S V-S

u
v

x

Cycles and Cuts
Claim. A cycle crosses a cut (from S to V-S) an even

number of times.

Pf. (by picture)

9

u

S

V - S

C

Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpoint in S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

10

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.
Pf. By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
C crosses S even number of timesÞ there exists another edge,
say f, that leaves S.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

11

f

T*
e

S

u v

Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and
connects the components.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.

12

f

T*
e

S

Kruskal’s Algorithm [1956]

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

Kruskal’s Algorithm: Pf of Correctness
Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to
cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

Implementation: Kruskal’s Algorithm
Implementation. Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and O(m log n) for union-find

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}

