CSE 421

Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan

An Advice on Problem Solving

If possible, try not to use arguments of the following type in proofs:

- The Best case is
- The worst case is

These arguments need rigorous justification, and they are usually the main reason that your proofs can become wrong, or unjustified.

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.
Q. Does there always exist a schedule equal to depth of intervals?

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots, m sn
d}\leftarrow
for j = 1 to n {
    if (lect j is compatible with some classroom k, 1\leqk\leqd)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d}\leftarrowd+
}
```

Implementation: Exercise!

Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let $d=$ number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job, say j , that is incompatible with all $\mathrm{d}-1$ previously used classrooms.
Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s(j).
Thus, we have d lectures overlapping at time $s(j)+\epsilon$, i.e. depth \geq d
"OPT Observation" \Rightarrow all schedules use \geq depth classrooms, so $d=$ depth and greedy is optimal "

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph $G=(V, E)$ with real-valued edge weights c_{e}, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$$
G=(V, E)
$$

$$
c(T)=\sum_{e \in T} c_{e}=50
$$

Cuts

In a graph $G=(V, E)$ a cut is a bipartition of V into sets $S, V-S$ for some $S \subseteq V$. We show it by $(S, V-S)$

An edge $e=\{u, v\}$ is in the cut $(S, V-S)$ if exactly one of u, v is in S.

Obs: If G is connected then there is at least one edge in every cut.

Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)

Properties of the OPT

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST

Cut Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S . Then T^{*} contains e.
Pf. By contradiction
Suppose $e=\{u, v\}$ does not belong to T^{*}.
Adding e to T^{*} creates a cycle C in T^{*}.
C crosses S even number of times \Rightarrow there exists another edge, say f, that leaves S.
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $\mathrm{c}_{\mathrm{e}}<\mathrm{c}_{\mathrm{f}}, \mathrm{c}(T)<\mathrm{c}\left(T^{*}\right)$.
This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cycle property: Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST T^{*} does not contain f .

Pf. (By contradiction)
Suppose f belongs to T^{*}.
Deleting from T* cuts T^{*} into two connected components.
There exists another edge, say e, that is in the cycle and connects the components.
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $\mathrm{c}_{\mathrm{e}}<\mathrm{c}_{\mathrm{f}}, \mathrm{c}(T)<\mathrm{c}\left(T^{*}\right)$.
This is a contradiction.

Kruskal's Algorithm [1956]

```
Kruskal(G, c) {
    Sort edges weights so that cor \leq c c < \leq .. \leq cm.
    T\leftarrow\emptyset
    foreach (u\inV) make a set containing singleton {u}
    for i = 1 to m
        Let (u,v) = e i
        if (u and v are in different sets) {
            T}\leftarrowT\cup{\mp@subsup{e}{i}{}
            merge the sets containing u and v
        }
    return T
}
```


Kruskal's Algorithm: Pf of Correctness

Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut property where $S=$ set of nodes in u's connected component.

Case 1

Case 2

Implementation: Kruskal's Algorithm

 Implementation. Use the union-find data structure.- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq\ldots\leq\mp@subsup{c}{m}{}
    T\leftarrow\emptyset
    foreach (u\inV) make a set containing singleton {u}
    for i = 1 to m
        Let (u,v) = e ei
        if (u and v are in different sets) {
            T}\leftarrowT\cup{\mp@subsup{e}{i}{}
            merge the sets containing u}\mathrm{ and v
        }
    return T
}
```

