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An Advice on Problem Solving

If possible, try not to use arguments of the following type in 
proofs:

• The Best case is ….

• The worst case is ….

These arguments need rigorous justification, and they are 
usually the main reason that your proofs can become 
wrong, or unjustified.
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A Structural Lower-Bound on OPT

Def.  The depth of a set of open intervals is the maximum 
number that contain any given time.

Key observation.  Number of classrooms needed  ³ depth.

Ex:  Depth of schedule below = 3  Þ schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of 
intervals?
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 
start time:  assign lecture to any compatible classroom.

Implementation: Exercise!
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Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¬ d + 1

}    



Correctness

Observation:  Greedy algorithm never schedules two 
incompatible lectures in the same classroom.

Theorem:  Greedy algorithm is optimal.
Pf (exploit structural property).  
Let d = number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job, 
say j, that is incompatible with all d-1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are 
caused by lectures that start no later than s(j).
Thus, we have d lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e.    

depth ³ d
“OPT Observation” Þ all schedules use ³ depth classrooms,  
so d = depth and greedy is optimal ▪ 5



Minimum Spanning Tree Problem



Minimum Spanning Tree (MST)

Given a connected graph 𝐺 = (𝑉, 𝐸) with real-valued edge 
weights ce, an MST is a subset of the edges 𝑇 ⊆ 𝐸 such that 
𝑇 is a spanning tree whose sum of edge weights is 
minimized.
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Cuts

In a graph 𝐺 = (𝑉, 𝐸) a cut is a bipartition of V into sets 𝑆, 𝑉 − 𝑆
for some 𝑆 ⊆ 𝑉. We show it by (𝑆, 𝑉 − 𝑆)

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of u,v is in 
S.

Obs: If G is connected then there is at least one edge in every 
cut. 8
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Cycles and Cuts
Claim.  A cycle crosses a cut (from S to V-S) an even 

number of times.

Pf.  (by picture)
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Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property:  Let S be any subset of nodes (called a cut), and let 
e be the min cost edge with exactly one endpoint in S.  Then 
every MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost 
edge belonging to C.  Then no MST contains f.
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Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property.  Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.
Pf.  By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
C crosses S even number of timesÞ there exists another edge, 
say f, that leaves S.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.   
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Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property:  Let C be any cycle in G, and let f be the max cost 
edge belonging to C. Then the MST T* does not contain f.

Pf.  (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and 
connects the components.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) < c(𝑇∗).
This is a contradiction.   
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Kruskal’s Algorithm [1956]

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}



Kruskal’s Algorithm: Pf of Correctness
Consider edges in ascending order of weight.
Case 1:  If adding e to T creates a cycle, discard e according to 
cycle property.
Case 2:  Otherwise, insert e = (u, v) into T according to cut 
property where S = set of nodes in u's connected component. 
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Implementation: Kruskal’s Algorithm
Implementation.  Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and  O(m log n) for union-find

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
𝑻 ← ∅

foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

for i = 1 to m
Let (u,v) = ei
if (u and v are in different sets) {

𝑻 ← 𝑻È {𝒆𝒊}
merge the sets containing 𝒖 and 𝒗

}
return 𝑻

}


