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Topological Order Algorithm:  Example
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Topological order:  1, 2, 3, 4, 5, 6, 7
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Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S È {w} for all w with count[w]=0

Main loop: 
while S not empty

• remove some v from S
• make v next in topo order O(1) per node
• for all edges from v to some w O(1) per edge

–decrement count[w]
–add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n)  (assuming edge-list representation of graph)
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DFS on Directed Graphs
• Before DFS(s) returns, it visits all previously unvisited 

vertices reachable via directed paths from s

• Every cycle contains a back edge in the DFS tree
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Summary
• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: m = O(n2), often less

• BFS: Layers, queue, shortest paths, all edges go to same 
or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological 
sort 6



Greedy Algorithms



Greedy Strategy

Goal:  Given currency denominations: 1, 5, 10, 25, 100, 
give change to customer using fewest number of coins.

Ex:  34¢.

Cashier's algorithm:  At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.
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Greedy is not always Optimal

Observation:  Greedy algorithm is sub-optimal for US 
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
Greedy:  100, 34, 1, 1, 1, 1, 1, 1.
Optimal:  70, 70.

Lesson: Greedy is short-sighted. Always chooses the most 
attractive choice at the moment. But this may lead to a dead-
end later.
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Greedy Algorithms Outline

Pros
• Intuitive
• Often simple to design (and to implement)
• Often fast

Cons
• Often incorrect!

Proof techniques:
• Stay ahead
• Structural
• Exchange arguments
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Interval Scheduling
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Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
• Two jobs compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.
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Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as 
much as possible provided it is compatible with the jobs 
already taken.

Main question:

• What order?

• Does it give the Optimum answer?

• Why?
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Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as 
possible provided it is compatible with the jobs already taken.

[Earliest start time]  Consider jobs in ascending order of start time sj.

[Earliest finish time]  Consider jobs in ascending order of finish time fj.

[Shortest interval]  Consider jobs in ascending order of interval length  
fj - sj.

[Fewest conflicts] For each job, count the number of conflicting jobs 
cj. Schedule in ascending order of conflicts cj.
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Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job 
provided it’s compatible with the ones already taken.

Implementation.  O(n log n).
• Remember job j* that was added last to A.
• Job j is compatible with A if s(j) ³ 𝑓(𝑗∗)*.
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Sort jobs by finish times so that f(1) £ f(2) £ ... £ f(n).
𝑨 ← ∅
for j = 1 to n {

if (job j compatible with 𝑨)
𝑨 ← 𝑨 ∪ {𝒋}

}
return 𝑨



Greedy Alg: Example
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Correctness

Theorem:  Greedy algorithm is optimal.

Pf: (technique: “Greedy stays ahead”)
Let i1, i2, ... ik be jobs picked by greedy,  j1, j2, ... jm those in some 
optimal solution in order. 
We show f(ir) £ f(jr) for all r, by induction on r.

Base Case: i1 chosen to have min finish time, so f(i1) £ f(j1). 
IH: 𝑓(𝑖𝑟) £ 𝑓 𝑗) for some r
IS: Since 𝑓 𝑖) ≤ 𝑓(𝑗𝑟)£ 𝑠(𝑗)*+), jr+1 is among the candidates 
considered by greedy when it picked ir+1, & it picks min finish, so 
f(ir+1) £ f(jr+1)

Observe that we must have 𝑘 ≥ 𝑚, else jk+1 is among 
(nonempty) set of candidates for ik+1 17



Interval Partitioning
Technique: Structural



Interval Partitioning

Lecture j starts at s(j) and finishes at f(j).
Goal:  find minimum number of classrooms to schedule all lectures so that no 
two occur at the same time in the same room.
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Interval Partitioning
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Note: graph coloring is very hard in 
general, but graphs corresponding to 

interval intersections are simpler.



A Better Schedule

This one uses only 3 classrooms
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A Structural Lower-Bound on OPT

Def.  The depth of a set of open intervals is the maximum 
number that contain any given time.
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A Structural Lower-Bound on OPT

Def.  The depth of a set of open intervals is the maximum 
number that contain any given time.

Key observation.  Number of classrooms needed  ³ depth.

Ex:  Depth of schedule below = 3  Þ schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of 
intervals?
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 
start time:  assign lecture to any compatible classroom.

Implementation: Exercise!
24

Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¬ d + 1

}    



Correctness

Observation:  Greedy algorithm never schedules two 
incompatible lectures in the same classroom.

Theorem:  Greedy algorithm is optimal.
Pf (exploit structural property).  
Let d = number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job, 
say j, that is incompatible with all d-1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are 
caused by lectures that start no later than s(j).
Thus, we have d lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e.    

depth ³ d
“OPT Observation” Þ all schedules use ³ depth classrooms,  
so d = depth and greedy is optimal ▪ 25



Minimum Spanning Tree Problem



Minimum Spanning Tree (MST)

Given a connected graph 𝐺 = (𝑉, 𝐸) with real-valued edge 
weights ce, an MST is a subset of the edges 𝑇 ⊆ 𝐸 such that 
𝑇 is a spanning tree whose sum of edge weights is 
minimized.
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Applications
Network design:
• telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems:
• traveling salesperson problem, Steiner tree

Indirect applications:
• Graph clustering
• max bottleneck paths
• LDPC codes for error correction
• image registration with Renyi entropy
• learning salient features for real-time face verification
• reducing data storage in sequencing amino acids in a protein
• model locality of particle interactions in turbulent fluid flows
• autoconfig protocol for Ethernet bridging to avoid cycles in a network
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Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property:  Let S be any subset of nodes (called a cut), and let 
e be the min cost edge with exactly one endpoint in S.  Then 
every MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost 
edge belonging to C.  Then no MST contains f.
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Cycles and Cuts
Claim.  A cycle crosses a cut (from S to V-S) an even 

number of times.

Pf.  (by picture)
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Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property.  Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then the T* contains e.
Pf.  By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
There is a path from u to v in T*  Þ there exists another edge, 
say f, that leaves S.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, cost(𝑇) < cost(𝑇∗).
This is a contradiction.   
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Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property:  Let C be any cycle in G, and let f be the max cost 
edge belonging to C. Then the MST T* does not contain f.

Pf.  (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and 
connects the components.

𝑇 = 𝑇∗ È {𝑒} − {𝑓} is also a spanning tree.
Since ce < cf, cost(𝑇) < cost(𝑇∗).
This is a contradiction.   
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