1 Asymptotics

Some properties of asymptotics:

- If $f \leq O(g)$ and $g \leq O(h)$ then $f \leq O(h)$.
- If $f \geq \Omega(g)$ and $g \geq \Omega(h)$ then $f \geq \Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.
- If $f=O(h), g=O(h)$ then $f+g=O(h)$.

Some common running times:

- Polynomial: $O\left(n^{d}\right)$. Exponential $2^{O(n)}$, Logarithmic $O(\log n)$.
- For every positive ϵ (no matter how small), $\log n \leq O\left(n^{\epsilon}\right)$. For every positive d (no matter how large), $n^{d} \leq O\left(2^{n}\right)$.

2 In class exercise

Arrange in increasing order of asymptotic growth. All logs are in base 2.
a) $n^{5 / 3}$
b) $2^{\sqrt{\log n}}$
c) $\sqrt{n^{n}}$
d) $\frac{n^{2}}{\log n}$
e) 2^{n}.

Hint: Recall rules of logarithm

- $\log (a \cdot b)=\log a+\log b$,
- $\log (a / b)=\log a-\log b$.
- $\log a^{b}=b \log a$.

Always keep in mind $n=2^{\log _{2} n}$. For example, $n^{1.5}=2^{1.5 \log _{2} n}$. Also recall and that $\left(2^{a}\right)^{b}=2^{a \cdot b}$.

