CSE421: Design and Analysis of Algorithms

Homework 2

Shayan Oveis Gharan
Due: April 15, 2021 at 11:59 PM

P1) (20 points) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex of degree at least 3 , and $3 \geq 1$.

P2) (20 points) Given a connected undirected graph $G=(V, E)$ with n vertices and $m=n+k$ edges. Design an $O(m+n)$ time algorithm that outputs k edges e_{1}, \ldots, e_{k} of G such that if we delete all of these edges G still remains connected. For example in the following graph if you delete both of the red edges the graph remains connected.

P3) (20 points) Given a weighted graph $G=(V, E)$ where every edge $e \in E$ has a weight $w_{e} \in$ $\{1,2,3\}$ and a vertex $s \in V$. Design an $O(m+n)$ time algorithm that outputs the length of the shortest path from s to all vertices of V. Recall that in a weighted graph the length of a path P with edges e_{1}, \ldots, e_{k} is $w_{e_{1}}+\cdots+w_{e_{k}}$. For example, in the following graph the length of the shortest path from s to a, b, c are $2,1,3$ respectively.

P4) (20 points) Given an undirected graph $G=(V, E)$ with n vertices such that the degree of every vertex of G is at most k. Show that we can color the edges of G with at most $2 k-1$ colors such that any pair of edges e, f which are incident to the same vertex have distinct colors. For example, in the following graph, we have $k=2$, and we can color edges of G with $2 k-1=3$ colors as follows:

P5) Extra Credit: Prove that we can color the edges of every graph G with two colors (red and blue) such that, for every vertex v, the number of red edges touching v and the number of blue edges touch v differ by at most 2 .

