
CSE421: Design and Analysis of Algorithms May 07, 2021

Lecturer: Shayan Oveis Gharan Lecture 17 Dijkstra’s Algorithms

1 Shortest Path with Edge Lengths (Dijkstra’s Algorithm)

1.1 An imprecise implementation

Input: A graph in adjacency list representation and a vertex s. For each edge e, a positive
length ℓe

Result: For each vertex v a label d(v) which is the distance of v from s
For all vertices u, set discovered(u) ← false;
Set d(s) ← 0 and d(v) = ∞ for all other vertices;
Set discovered(s) ← true;
while there are undiscovered vertices connected to discovered vertices, do

Let v be the undiscovered vertex that minimizes d(u) + c{u,v}, where u is a discovered

vertex. This is the cheapest way to leave the set of discovered vertices;
Set discovered(v) ← true;
Set d(v) = d(u) + c{u,v};

end

Algorithm 1: Shortest Paths with Edge Lengths

The proof of correctness follows from the following lemma:

Lemma 1. Every vertex that is reachable from s is assigned its shortest path to s as d(v).

Proof During the run of the algorithm, let S be the set of vertices that are discovered. We prove
by induction on |S| that for every vertex v ∈ S, d(v) is the length of the shortest path from s to v.
Note that eventually S is all vertices reachable from s.

Base case: S = {s}. In this case obviously the shortest path to s is zero (BC all edge weights
are non-negative).

IH: Suppose for some k ≥ 1, when |S| = k we have found the shortest path to all vertices in S.
IS: Suppose v is the k+1 vertex that we discover, i.e., v is the vertex minimizing d(u)+ c{u,v}.

Then, by IH the shortest path from s to u is d(u), so v has a path of length at most d(v) =
d(u) + c{u,v} from s. For the sake of contradiction, suppose d(u) + c{u,v} is not the length of the
shortest path to v. Suppose there is a path P ′ = (s = u0, . . . , uk = v) of length less than d(v) to
v. Then there is some i such that ui ∈ S, but ui+1 /∈ S. By IH, d(ui) is the length of the shortest
path from s to ui. Let P

′′ be the sub-path of P ′ from s to ui+1. Then,

c(P ′) ≥ c(P ′′) ≥ d(ui) + cui,ui+1 ≥ d(u) + cu,v = c(P )

where the first inequality follows since all edges have nonnegative costs, the second inequality
follows since d(ui) is the length of the shortest path from s to ui and the last inequality follows
since d(u) + cu,v was the minimum among all edges coming out of S, the set of discovered vertices.
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But, this implies that c(P ′) ≥ c(P ) which is a contradiction.

In order to give a fast implementation of Dijkstra’s algorithm, we need a data structure called
a heap. This is a data structure that maintains a balanced binary tree of the vertices, where each
vertex is given a key value d(v). The data structure maintains the invariant that if v is the parent
of u,w in the data structure, then d(v) ≤ min{d(u), d(v)}.

Input: A graph in adjacency list representation and a vertex s. For each edge e, a positive
length le

Result: For each vertex v a label d(v) which is the distance of v from s
For all vertices u, set d(u) = ∞;
Set d(s) = 0;
Initialize a heap H to store all vertices using d(v) as key;
while H is not empty, do

Delete the vertex u with the minimum key value d(u) from H;
for all edges {u, v} do

if d(v) > d(u) + c{u,v} then

d(v) = d(u) + c{u,v};

decrease the key of v in H;

end

end

end

Algorithm 2: Shortest Paths with Edge Lengths

To finish our description of the algorithm, we need to explain how to handle the heap operations.
We can maintain the initial heap by putting the vertices v in an array where s is the first element
and all other elements follow it (in arbitrary order). This encodes the binary tree where each
element at location j in the array is the parent of the elements at location 2j and 2j + 1. To
delete the minimum element from the heap, we can take the element that is at the end of the array
and write it over the element at location 1. We can then compare this element to its children and
rearrange the elements as needed to maintain the heap invariant. This requires at most O(log n)
swaps to fix the heap invariant throughout the tree. Similarly, to decrease d(v) for any vertex
d(v), we can repeatedly swap v with its parent until the heap invariant property is restored. This
also requires at most O(log n) operations. Thus the total running time of the above algorithm is
O((n+m) log n).
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