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(Chapter 8) 
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What can we feasibly compute? 

Focus so far has been to give good algorithms for 
specific problems (and general techniques that help do 
this). 
 
Now shifting focus to problems where we think this is 
impossible.  Sadly, there are many… 
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Polynomial Time 
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The class P 

Definition: P  = the set of (decision) problems solvable 
by computers in polynomial time,  i.e., T(n) = O(nk) for 
some fixed k (indp of input). 
These problems are sometimes called tractable 
problems. 
 
Examples: sorting, shortest path, MST, connectivity, 
RNA folding & other dyn. prog., flows & matching 
– i.e.: most of this qtr 

(exceptions: Change-Making/Stamps, Knapsack, TSP) 
 

(defined later) 



•  n2000 is not a nice time bound 
•  differences among n, 2n and n2 are not negligible. 
But, simple theoretical tools don’t easily capture such 
differences, while exponential vs polynomial is a 
qualitative difference potentially more amenable to 
theoretical analysis. 

“Problem is in P” a starting point for more detailed analysis 
“Problem is not in P” may suggest that you need to shift to 
a more tractable variant / lower your expectations 

Why “Polynomial”? 
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Polynomial vs  
Exponential Growth 

  



Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 2  x 1012 

O(n2) n0 → √2 n0 106         1.4  x 106 

O(n3) n0 → 3√2 n0 104 1.25  x 104 

2n /10 n0 → n0+10 400 410 
2n n0 → n0 +1 40 41 

Another view of Poly vs Exp 

Next year’s computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a 
problem can I solve in the same time next year?  
 

7 



Two Problems 

How hard are they?  We don’t fully know… 
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The Independent Set Problem 

Given: a graph G=(V,E) and an integer k 
Question: is there U ⊆ V with |U| ≥ k s.t.  
no pair of vertices in U is joined by an edge? 
What’s it good for? 

E.g., if nodes = web pages, and edges join “similar” pages, then pages 
forming an independent set are likely to  represent distinctly different 
topics 
E.g., if nodes = courses and edges = a student is co-enrolled, then an 
independent set is a set of courses whose finals could scheduled 
simultaneously 

How hard is it? 
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Boolean Satisfiability 

Boolean variables x1, ..., xn 
taking values in {0,1}.  0=false, 1=true 

Literals 
xi or ¬xi for i = 1, ..., n 

Clause 
a logical OR of one or more literals 
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) 

CNF formula (“conjunctive normal form”) 
a logical AND of a bunch of clauses 
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Boolean Satisfiability 

CNF formula example 
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7) 

If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable 

the one above is, the following isn’t 
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3 
 

Satisfiability:  Given a CNF formula F, is it satisfiable? 
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Satisfiable? 
( x ∨ y ∨ z ) ∧ ( ¬x ∨ y ∨ ¬z ) ∧ 
( x ∨ ¬y ∨ z ) ∧ ( ¬x ∨ ¬y ∨ z ) ∧ 
( ¬x ∨ ¬y ∨ ¬z ) ∧ ( x ∨ y ∨ z ) ∧ 
( x ∨ ¬y ∨ z ) ∧ ( x ∨ y ∨ ¬z ) 

( x ∨ y ∨ z ) ∧ ( ¬x ∨ y ∨ ¬z ) ∧ 
( x ∨ ¬y ∨ ¬z ) ∧ ( ¬x ∨ ¬y ∨ z ) ∧ 
( ¬x ∨ ¬y ∨ ¬z ) ∧ ( ¬x ∨ y ∨ z ) ∧ 
( x ∨ ¬y ∨ z ) ∧ ( x ∨ y ∨ ¬z ) 



Satisfiability 

What’s it good for? 
Theorem provers 
Circuit validation 
Analysis of program logic 
Etc. 

 
How hard is it? 

Don’t know fully 
Exponential time is easily possible (try all 2n assignments) 
But no poly time solution is known 
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Reduction, I 
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Reductions: a useful tool 

Definition: To “reduce A to B” means to solve A, 
given a subroutine solving B. 
 
Example: reduce MEDIAN to SORT 

Solution: sort, then select (n/2)nd 

Example: reduce SORT to FIND_MAX 
Solution: FIND_MAX, remove it, repeat 

Example: reduce MEDIAN to FIND_MAX 
Solution: transitivity: compose solutions above. 



Another Example of Reduction  

reduce BIPARTITE_MATCHING to MAX_FLOW 
 

s t 

All capacities = 1 

Is there a flow of size k? 
u v 

Is there a matching of size k? 

f 
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“complexity of A” ≤ “complexity of B” + “complexity of reduction” 

Reductions & Time 

Definition: To reduce A to B means to solve A, 
given a subroutine solving B. 

 

If setting up call, etc., is fast, then a fast algorithm  
for B implies (nearly as) fast an algorithm for A 

 

Contrapositive: If every algorithm for A is slow, 
then no algorithm for B can be fast. 
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SAT and Independent Set 

They are superficially different problems,  
but are intimately related at a deep level 

18 



19 

3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

x3

¬x1

x3

3SAT ≤p IndpSet  

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1 ∨ x3) 

¬x3

¬x2

x1x1

x2

¬x3
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f                                                                           = 
        

3-SAT Instance:
– Variables: x1, x2, …     
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

IndpSet Instance:
–  k = q
–  G = (V, E)
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }

3SAT ≤p IndpSet  
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k=2 

3SAT ≤p IndpSet  

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)     

¬x3

¬x2

x1x1

x2

¬x3
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3SAT ≤p IndpSet  

    

k=3 



Correctness of “3SAT ≤p IndpSet” 

Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group; 
connect all complementary literal pairs (x, ¬x). Output graph G plus integer k = 
number of clauses.  Note: f does not know whether formula is satisfiable or not; does 
not know if G has k-IndpSet; does not try to find satisfying assignment or set. 
Correctness: 
 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.   
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:  
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add 
corresponding node of each triangle to set.  Show it is an IndpSet: 1 per triangle 
never conflicts w/ another in same triangle; only true literals (but perhaps not all 
true literals) picked, so not both ends of any (x, ¬x) edge. 
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps 
partial) truth assignment since no (x, ¬x) pair picked.  It satisfies c since there is 
one selected node in each clause triangle (else some other clause triangle has > 1 
selected node, hence not an independent set.) 

27 



28 

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

Utility of “3SAT ≤p IndpSet” 

Suppose we had a fast algorithm  
for IndpSet, then we could  
get a fast algorithm for 3SAT: 

Given 3-CNF formula w, build Independent 
Set instance y = f(w) as above, run the fast  
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y 
has a Independent Set of the given size” 

On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
Independent Set either. 



“3SAT ≤p IndpSet” Retrospective 

Previous slides: two suppositions 
Somewhat clumsy to have to state things that way. 
Alternative: abstract out the key elements, give it a 
name (“polynomial time mapping reduction”), then 
properties like the above always hold.  
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Reduction, II 

Polynomial time “mapping” reduction 
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Decision Problems 

Most of NP theory NP is framed for decision problems, i.e., 
problems for which the desired answer is YES/NO, e.g.  

•  “Is there a satisfying assignment for formula f?”  or  
•  “Does graph G have an independent set of size k?” 

 
Notation: for a decision problem A, we view A as the set of 
YES instances: i.e., “x ∈ A” means “x is a YES instance of A”. 
E.g., examples above become:  

•  “f  ∈ SAT ?”  and 
•  “(G, k) ∈ IndpSet ?” 

 31 
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Polynomial-Time Reductions 

Definition: Let A and B be two decision problems. 
A is polynomially (mapping) reducible to B (A  ≤p B) if 
there exists a polynomial-time algorithm f that 
converts each instance x of problem A to an 
instance f(x) of B such that: 
 
x is a YES instance of A  iff  f(x) is a YES instance of B 

 
x ∈ A   ⇔   f(x) ∈ B  

The notation “A  ≤p B” is meant to suggest “A is easier than B”, or 
more precisely,  “A is not more than polynomially harder than B” 
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Polynomial-Time Reductions (cont.) 

Defn: A ≤p B  “A is polynomial-time reducible to B,” 
iff there is a polynomial-time computable function f 
such that:   x ∈ A   ⇔   f(x) ∈ B  

“complexity of A” ≤ “complexity of B” + “complexity of f ” 

Theorem: 
(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P  
(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P   
(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity) 

polynomial



Another Example Reduction 

SAT to Subset Sum (Knapsack) 
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Subset-Sum, AKA Knapsack 

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C } 
 
wi’s and C encoded in radix r ≥ 2.  (Decimal used in 

following example.) 
 
Theorem:  3-SAT  ≤p  KNAP 
Pf: given formula with p variables & q clauses, build KNAP instance with  

2(p+q) wi’s, each with (p+q) decimal digits.  See examples below. 
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3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (   x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (  y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  ( z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   
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What/How Many Satisfying 

Assignments? 
 

What/How Many KNAP 
solutions? 
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3-SAT  ≤p  KNAP 
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f                                                                           = 
        

3-SAT Instance:
– Variables: x1, x2, …, xp   
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

KNAP Instance:
–  2(p+q) wi’s, each with (p+q) decimal digits, mostly 0 
–  For the 2p “literal” weights, a single 1 in H.O. p digits  

marks which variable; 1’s in L.O. q digits mark each  
claus containing that literal. 

–  Two “slacks” per clause; single 1 marks the clause.
–  Knapsack Capacity C = 11..133..3 (p 1’s, q 3’s)

3-SAT  ≤p  KNAP 



Correctness 

Poly time for reduction is routine; details omitted.  Note that it does not look 
at satisfying assignment(s), if any, nor at subset sums (but the problem 
instance it builds captures one via the other... ) 

If formula is satisfiable, select the literal weights corresponding to the true 
literals in a satisfying assignment. If that assignment satisfies k literals in a 
clause, also select (3 - k) of the “slack” weights for that clause.  Total = C. 

Conversely, suppose KNAP instance has a solution. Columns are decoupled 
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are 
decimal).  Since H.O. p digits of C are 1, exactly one of each pair of literal 
weights included in the subset, so it defines a valid assignment. Since L.O. 
q digits of C are 3, but at most 2 “slack” weights contribute to each, at 
least one of the selected literal weights must be 1 in that clause, hence the 
assignment satisfies the formula. 
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Decision vs Search Problems 
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The Clique Problem 

Given: a graph G=(V,E) and an integer k 
Question: is there a subset U of V with 
|U| ≥ k such that every pair of vertices in  
U is joined by an edge. 
 
E.g., if nodes are web pages, and edges join “similar” pages, 
then pages forming a clique are likely to be about the same 
topic 
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Problem Types 

A clique in an undirect graph G=(V,E) is a  
subset U of V  such that every pair of  
vertices in U is joined by an edge. 

E.g., mutual friends on facebook, genes that vary together 

An optimization problem: How large is the largest clique in G 

A search problem: Find the/a largest clique in G  
A search problem: Given G and integer k, find a k-clique in G 
A decision problem: Given G and k, is there a k-clique in G 
A verification problem: Given G, k, U, is U a k-clique in G 
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“Problem” – the general case 
Ex: The Clique Problem: Given a graph G and an 
integer k, does G contain a k-clique? 

“Problem Instance” – the specific cases 
Ex: Does                     contain a 4-clique? (no) 
Ex: Does                     contain a 3-clique? (yes) 

Problems as Sets of “Yes” Instances 
Ex: CLIQUE = { (G,k) | G contains a k-clique } 

E.g., (                 , 4) ∉  CLIQUE 
E.g., (                 , 3) ∈  CLIQUE 

Some Convenient Technicalities 
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Beyond P 
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Beyond P? 

There are many natural, practical problems for 
which we don’t know any polynomial-time 
algorithms: 
  e.g. SAT, IndpSet, CLIQUE, KNAP, TSP, …  
 
 

 

Lack of imagination or intrinsic barrier? 
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NP 
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NP

P

Exp
And  
   worse! 

Roadmap 

Not every problem is easy (in P) 
 

Exponential time is bad 
 
Worse things happen, too 
 
There is a very commonly-seen 
class of problems, called NP, that 
appear to require exponential time 
(but unproven)  



Review: Some Problems 

Quadratic Diophantine Equations 
Clique 
Independent Set 
Euler Tour 
Hamilton Tour 
TSP 
3-Coloring 
Partition 
Satisfiability 
Short Paths 
Long Paths 

All of the form: Given 
input  X, is there a Y 
with property Z?  
Furthermore, if I had a 
purported Y, I could 
quickly test whether it 
had property Z  
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Common property of these problems: 
Discrete Exponential Search 

 Loosely–find a needle in a haystack 
“Answer” to a decision problem is literally just yes/no, but 
there’s always a somewhat more elaborate “solution” (aka 
“hint” or “certificate”; what the search version would 
report) that transparently‡ justifies each “yes” instance (and 
only those) – but it’s buried in an exponentially large search 
space of potential solutions.  
 
 
 
‡Transparently = verifiable in polynomial time 



Defining NP: Informally 

NP is the set of decision problems where 
 There is a closely related search problem such that 
 For all “Yes” instances of the decision version 
 If I could guess a solution to the search problem 
 You could “check” my guess quickly (P-time) 

But 
 Your check wouldn’t be fooled by anything I say 
about a “No” instance 
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Defining NP: formally 

A decision problem L is in NP iff there is a polynomial time 
procedure v(-,-), (the “verifier”) and an integer k such that  

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES  
and 
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES 

(“Hints,” sometimes called “certificates,” or “witnesses”, are 
just strings. Think of them as exactly what the search version 
would output.) 
Note 1: a problem is “in NP” if it can be posed as an exponential 
search problem, even if there may be other ways to solve it. 

Note 2: his definition is not quickly actionable without a way to find 
h. 

 



Example: Clique 

“Is there a k-clique in this graph?” 
any subset of k vertices might be a clique 
there are many such subsets, but I only need to find one 
if I knew where it was, I could describe it succinctly, e.g. 
“look at vertices 2, 3, 17, 42, ...”,  
I’d know one if I saw one: “yes, there are edges between  
2 & 3, 2 & 17,... so it’s a k-clique” 
this can be quickly checked 
And if there is no k-clique, I wouldn’t be fooled  
by a statement like “look at vertices 2, 3, 17, 42, ...”   
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More Formally: CLIQUE is in NP 

procedure v(x,h) 
if  
    x is a well-formed representation of  a graph  
    G = (V, E) and an integer k,  
and  
    h is a well-formed representation of a k-vertex  
    subset U of V,  
and  
    U is a clique in G,  
then output “YES” 
else output “I’m unconvinced”  

Important note: this answer 
does NOT mean x ∉ CLIQUE; 
just means this h isn’t a k-clique 
(but some other might be).  
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Is it correct? 

For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique 
and 
No hint can fool v into saying yes if either x isn’t 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case) 
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2 



Example: SAT 

“Is there a satisfying assignment for this Boolean 
formula?” 

any assignment might work       
there are lots of them      
I only need one      
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”       
I’d know one if I saw one: “yes, plugging that in, I see formula = T...” 
and this can be quickly checked 
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F”       
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More Formally: SAT ∈ NP 

Hint: the satisfying assignment A 
Verifier: v(C, A) = syntax(C, A) && satisfies(C, A) 

Syntax: True iff  C is a well-formed CNF formula & A is a 
truth-assignment to its variables 
Satisfies: plug A into C; check that it  evaluates to True 

Correctness: 
If C is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it 
If C is unsatisfiable, it doesn’t, and we won’t be fooled 

Analysis:  |A| < |C|, and time for v(C,A) ~ linear in |C|+|A| 



IndpSet is in NP 

procedure v(x,h) 
if  
    x is a well-formed representation of  a graph  
    G = (V, E) and an integer k,  
and  
    h is a well-formed representation of a k-vertex  
    subset U of V,  
and  
    U is an Indp Set in G,  
then output “YES” 
else output “I’m unconvinced”  

Important note: this answer does 
NOT mean x ∉ IndpSet; just 
means this h isn’t a k-IndpSet 
(but some other might be).  59 



Is it correct? 

For every x = (G,k) such that G contains a k-
IndpSet, there is a hint h that will cause v(x,h) to say 
YES, namely h = a list of the vertices in such a set 
and 
No hint can fool v into saying yes if either x isn’t 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any Indp Set of size k (the 
interesting case) 
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2 
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Keys to showing  that  
a problem is in NP 

What’s the output?  (must be YES/NO) 
What’s the input?  Which are YES? 
For every given YES input, is there a hint that would help, i.e. 
allow verification in polynomial time?  Is it polynomial length? 

OK if some inputs need no hint 

For any given NO input, is there a hint that would trick you? 
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Two Final Points About “Hints”  

1.  Hints/verifiers aren’t unique.  The “… there is a …” 
framework often suggests their form, but many 
possibilities 
 “is there a clique” could be verified from its vertices, or its edges, or 
all but 3 of each, or all non-vertices, or…  Details of the hint string,  
the verifier and its time bound all shift, but same bottom line. 

 
2. In NP doesn’t prove its hard 

 “Short Path” or “Small Spanning Tree” or “Large Flow” can be 
formulated as “…there is a…,” but, due to very special structure of 
these problems, we can quickly find the solution even without a 
hint.  The mystery is whether that’s possible for the other problems, 
too. 62 



Contrast: problems not in NP (probably)  

Rather than “there is a…” maybe it’s  
“no…” or “for all…” or “the smallest/largest…” 

E.g. 
    UNSAT: “no assignment satisfies formula,” or  

“for all assignments, formula is false” 
Or 
    NOCLIQUE: “every subset of k vertices is not a k-clique” 

 MAXCLIQUE: “the largest clique has size k” 
Unlikely that a single, short hint is sufficiently informative to 
allow poly time verification of properties like these (but this 
is also an important open problem). 63 



NP-completeness 
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NP-Completeness 

Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B. 
 
Definition: Problem B is NP-complete 
if: 

(1) B belongs to NP, and  
(2) B is NP-hard. 

NP

P

Exp

NP-Hard 

NP-Complete 
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NP-completeness (cont.) 

Thousands of important problems have  
been shown to be NP-complete. 
 
The general belief is that there is no efficient 
algorithm for any NP-complete problem, but no 
proof of that belief is known.  
 
Examples: SAT, clique, vertex cover, IndpSet, 
Ham tour, TSP, bin packing… Basically, 
everything we’ve seen that’s in NP but not 
known to be in P 66 

NP

P

Exp

NP-Complete 

Worse 



Proving a problem is NP-
complete 

Technically, for condition (2) we have to show 
that every problem in NP is reducible to B.   
(Sounds like a lot of work!) 
For the very first NP-complete problem (SAT) 
this had to be proved directly.  
However, once we have one NP-complete 
problem, then we don’t have to do this every 
time. 
Why? Transitivity of ≤p. 
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Alt way to prove NP-completeness 

Lemma: Problem B is NP-complete iff: 
(1)  B belongs to NP, and  
(2’) Some NP-complete problem A is polynomial-
time reducible to B. 
 

That is, to show NP-completeness of a new 
problem B in NP, it suffices to show that SAT or 
any other NP-complete problem is polynomial-time 
reducible to B. 
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Ex: IndpSet is NP-complete 

3-SAT is NP-complete (S. Cook; see below) 
3-SAT ≤p IndpSet 
IndpSet is in NP  
Therefore IndpSet is also NP-complete 
 
So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP 
 
Ditto for KNAP, 3COLOR, … 

we showed these earlier 



Cook’s Theorem 

SAT is NP-Complete 
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“NP-completeness” 

Cool concept, but are there  
any such problems? 

 
Yes! 

 
Cook’s theorem: SAT is NP-complete 
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Why is SAT NP-complete? 

Cook’s proof is somewhat involved. I’ll sketch it 
below.  But its essence is not so hard to grasp: 

Encode “solution” using Boolean variables.  SAT mimics “is there a 
solution” via “is there an assignment”.  The “verifier” runs on a digital 
computer, and digital computers just do Boolean logic.  “SAT” can 
mimic that, too, hence can verify that the assignment actually encodes 
a solution. 

Generic “NP” probs: expo. search– 
is there a poly size “solution,” 
verifiable by computer in poly time 

“SAT”:  is there a poly size 
assignment (the hint) satisfying 
the formula (the verifier)
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Examples 

Again, Cook’s theorem does this for generic NP 
problems, but you can get the flavor from a few specific 
examples 

73 



3-Coloring ≤p SAT      

Given G = (V, E) 
∀ i in V, variables ri, gi, bi encode color of i 
 

∧i ∈ V [(ri ∨ gi ∨ bi) ∧  
 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧ 

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)] 

74 

adj nodes ⇔ diff colors 
no node gets 2  
every node gets a color 

hi
nt

 
ve

ri
fie

r 

Equivalently: 
(¬(ri  ∧ gi)) ∧ (¬(gi  ∧ bi)) ∧ (¬(bi  ∧ ri)) ∧ 
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)] 



Independent Set ≤p SAT 

Given G = (V, E) and k 
∀ i in V, variable xi encodes inclusion of i in IS 
 

 

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”  

75 

every edge has one end 
or other not in IS  

(no edge connects 2 in IS) 

possible in 3 CNF, but technically 
messy, so details omitted;  

basically, count 1’s 
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Vertex cover ≤p SAT 

Given G = (V, E) and k 
∀ i in V, variable xi encodes inclusion of i in cover 
 

 
∧(i,j) ∈ E (xi ∨ xj) ∧ “number of True xi is ≤ k”  

every edge covered 
by one end or other 

possible in 3 CNF, but technically 
messy; basically, count 1’s 

hi
nt

 
ve

ri
fie
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Hamilton Circuit ≤p SAT 

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)] 
∀ i,j in V, variables xij, encode “j follows i in the tour” 
 

 

∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n” 

the path follows 
actual edges 

every row/column 
has exactly 1 one 

bit 

Xn = I, no smaller 
power k has Xkii=1 

hi
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Perfect Matching ≤p SAT 

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)] 
∀ i<j in V, variable xij, encodes “edge i,j is in matching” 
 

(∧(i<j) (xij ⇒ eij)) ∧ (∧(i<j<k) (xij ⇒ ¬xik) ) ∧ (∧i (∨j xij)) 

matching edges 
are actual edges 

all vertices  
are matched 

hi
nt

 
ve
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r 

it’s a matching: if 
edge (i,j) included, 
then (i,k) excluded 

78 



Cook’s Theorem 

Every problem in NP is reducible to SAT 
 
Idea of proof is extension of above examples, but done in a 
general way, based on the definition of NP – show how the 
SAT formula can simulate whatever (polynomial time) 
computation the verifier does. 
 
Cook proved it directly, but easier to see via an 
intermediate problem – Satisfiability of Circuits rather 
than Formulas 
 79 



Boolean Circuits 
(AKA combinational logic networks) 

 
 
 
 
Directed acyclic graph (yes, “circuit” is a misnomer…) 
Vertices = Boolean logic gates (∧, ∨, ¬, …) + inputs
Multiple input bits (x1, x2, … ) 
Single output bit (w) 
Gate values as expected (e.g., propagate vals by depth 

to xi’s) 
 

∧ ¬ ∨
x1

x2

w
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Boolean Circuits and Complexity 

Two Problems: 
 Circuit Value: given a circuit and an assignment of  
values to its inputs, is its output = 1? 
 Circuit SAT: given a circuit, is there an assignment of values 
to its inputs such that output =1?  

Complexity: 
 Circuit Value Problem is in P 
 Circuit SAT Problem is in NP 

Given implementation of computers via Boolean circuits, it 
may be unsurprising that they are complete in P/NP, resp. Sk

et
ch

ed
 b

el
ow
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Detailed Logic Diagram, 
Intelorola Pentathlon® 66000 

Registers/Latches/Memory 

Combinational Logic,  
Large Rat’s Nest of 

Really, 
Really,  

Fast Clock 82 



P Is Reducible To The 
Circuit Value Problem 

Registers/Latches/Memory 

 Combinational Logic,  
Large Rat’s Nest of 

Really, 
Really,  

Fast Clock 

Combinational Logic 

Combinational Logic 

Combinational Logic 

Answer yes? 

T 

T 
…     Input   … 0 1 0 0 1 1 
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…Input… 0 1 0 1 ??..Hint..?? 

NP Is Reducible To The 
Circuit Satisfiability Problem 

Registers/Latches/Memory 

 Combinational Logic,  
Large Rat’s Nest of 

Really, 
Really,  

Fast Clock 

Combinational Logic 

Combinational Logic 

Combinational Logic 

T 

T 

The Verifier  
Algorithm 

Answer yes? 84 



Correctness of NP ≤p CircuitSAT 

Fix an arbitrary NP-problem, a verifier alg V(x,h) for it, and a 
bound nk on hint length/run time of V,  show: 

1) In poly time, given x, can output a circuit C as above, 
2) ∃ h s.t. V(x,h)=“yes” ⇒ C is satisfiable (namely by h), and 
3) C is satisfiable (say, by h) ⇒ ∃ h s.t. V(x,h)=“yes” 

 
1)  is perhaps very tedious, but mechanical–you are 

“compiling” the verifier’s code into hardware (just enough 
hardware to handle all inputs of length |x|) 

2) & 3) exploit the fact that C simulates V, with C’s “hint bit” 
inputs exactly corresponding to V’s input h. 
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(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3 
 

Replace with 3-CNF Equivalent: 
 
 
 
 
 
 

∧ ¬ ∨
x1

x2 w1 w2 w3

Circuit-SAT  
≤p 3-SAT 

x1 x2 w1 x1∧x2 ¬(w1⇔(x1∧x2)) 
0 0 0 0 0 
0 0 1 0 1 ← ¬x1 ∧ ¬x2 ∧   w1 
0 1 0 0 0 
0 1 1 0 1 ← ¬x1 ∧    x2 ∧   w1 
1 0 0 0 0 
1 0 1 0 1 ←   x1 ∧  ¬x2 ∧   w1 
1 1 0 1 1 ←   x1 ∧     x2 ∧ ¬w1 
1 1 1 1 0 

¬clause  
↓ 

 Truth Table 
↓ 

 DNF   
↓ 

 DeMorgan 
↓ 

CNF 

∧ ¬ ∨f(                   ) = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)… 

Q.  Why build truth table clause-by-clause vs whole formula?  A:  So n*23 vs 2n rows  
86 



Correctness of “Circuit-SAT ≤p 3-SAT” 

Summary of reduction function f: Given circuit, add variable for every 
gate’s value, build clause for each gate, satisfiable iff gate value variable is 
appropriate logical function of its input variables, convert each to CNF 
via standard truth-table construction. Output conjunction of all, plus 
output variable.  Note: as usual, does not know whether circuit or formula are 
satisfiable or not; does not try to find satisfying assignment. 
Correctness: 
Show f is poly time computable: A key point is that formula size is linear 
in circuit size; mapping basically straightforward; details omitted.   
Show c in Circuit-SAT iff f(c) in SAT:  
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by 
evaluating the circuit on xi’s gate by gate.  Show this satisfies f(c). 
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c 
(with gate values given by wi’s). 
Thus, 3-SAT is NP-complete. 
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Relating P to NP 

88 



NP

P

89 

NP = Polynomial-time 
verifiable 

 
P   = Polynomial-time 

solvable 
 

P ⊆ NP: “verifier” is 
just the P-time alg; 
ignore “hint” 

 

Complexity Classes 
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The most obvious algorithm for most of these 
problems is brute force: 

try all possible hints; check each one to see if it works. 
Exponential time: 

2n truth assignments for n variables 

n! possible TSP tours of n vertices 

     possible k element subsets of n vertices, perhaps k = log n or n/3 

etc. 

…and to date, every alg, even much less-obvious 
ones, are slow, too  

!
"

#
$
%

&
k
n

Solving NP problems without hints 
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nk

2nk

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time 

Theorem: Every problem in 
NP can be solved 
(deterministically) in 
exponential time 
 
Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say, by backtracking.  If any 
succeed, answer YES; if  
all fail, answer NO. 
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NP

P

Exp
And  
   worse! 

P and NP 

Every problem in P is in NP 
one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given 
 

Every problem in NP is in 
exponential time 
 
I.e., P ⊆ NP ⊆ Exp 
We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both) 

E.g., see  
CSE 431 
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Does P = NP? 

This is the big open question! 
To show that P = NP, we have to show that 
every problem that belongs to NP can be solved 
by a polynomial time deterministic algorithm.   
Would be very cool, but no one has shown this 
yet. 
(And it seems unlikely to be true.) 
 



Polynomial Time Reduction, III 
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Two definitions of “A ≤p B” 

Book uses general definition: “could solve A in  
poly time, if I had a poly time subroutine for B.” 

Examples on previous slides are special case: 
•  call the subroutine once, report its answer. 

This special case is used in ~98% of all 
reductions 
Largely irrelevant for this course, but if you seem to need 1st defn, 
e.g. on HW, fine, but there’s perhaps a simpler way… 

K
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Example of the difference 

CLIQUE         = { (G,k) | G has a k-clique } 
MAXCLIQUE = { (G,k) | G’s largest clique is size k } 
Q: is MAXCLIQUE ∈ NP?  
A: probably not; a hint might give you a k-clique (& you could check it), 

but what “hint” would also convince you of absence of (k+1)-cliques? 

Theorem: CLIQUE ≤p          MAXCLIQUE, so later is NP-Hard 

Pf:  Ptime alg for  
CLIQUE, given  
hypothetical  
ptime subr for  
MAXCLIQUE: 

Exercise: show MAXCLIQUE ≤p          CLIQUE 

CLIQUE_Alg(G,k): 
 for j=k,…,|G| { 

     if MAXCLIQUE_Subr(G,j) says “yes”  
      then return “Yes,(G,k) ∈ CLIQUE” 

  } 
  return “No,(G,k) ∉ CLIQUE” 
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Cook  

Cook  
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More on Cook vs Karp Reductions 

Key properties shown 
earlier hold for both Cook 
& Karp reductions, but not  
everything. Differences are 
not critical for this course 
but, e.g. 

Theorem:  A ≤Karp B  and  B ∈ NP   ⇒   A ∈ NP 

whereas, the analogous result for Cook reduction 
would imply UNSAT ∈ NP, among other surprises. 

p 



More Reductions 

SAT to Coloring 
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NP-complete problem: 3-Coloring 

Input: An undirected graph G=(V,E). 
Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color. 
 
Example: 
 
 
In NP?  Exercise 
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T

F
N

T

F

A 3-Coloring Gadget: 
 

In what ways can this be 3-colored? 
 

100 
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T

F
N

output 

inputs 

Exercise: find 
all colorings 
of 5 nodes  

A 3-Coloring Gadget: 
“Sort of an OR gate“ 

if output is T, some input must be T 
if some input is T, output may be T 
 

NB: this is not  the same gadget as used in KT 8.7 
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3-SAT Instance:
– Variables: x1, x2, … 
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

3Color Instance:
–  G = (V, E)
–  6 q + 2 n + 3 vertices
–  13 q + 3 n + 3 edges
–  (See Example for details)

3SAT ≤p 3Color  

 
f                                                                        = 
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x1

¬x1

x2

¬x2

T

F
N

 (x1 ∨ ¬x1 ∨ ¬x1)  
∧  

(¬x1 ∨ x2 ∨ ¬x2)
3SAT ≤p 3Color Example 

6 q + 2 n + 3 vertices          13 q + 3 n + 3 edges 103 



Correctness of “3SAT ≤p 3Coloring” 

Summary of reduction function f: 
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2 
“or” gadgets per clause, connected as in example.   
Note: again, f does not know or construct satisfying assignment or coloring. 
Correctness: 
 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; graph looks messy, but pattern is basically straightforward.   
 • Show c in 3-SAT iff f(c) is 3-colorable:  
(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can  
color “or” gadgets so output nodes are T since each clause is satisfied. 
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example.  All square 
nodes are T or F (since all adjacent to N).  Each variable pair (xi, ¬xi) must have 
complementary labels since they’re adjacent.  Define assignment based on colors 
of xi’s.  Clause “output” nodes must be colored T since they’re adjacent to both 
N & F.   By fact noted earlier, output can be T only if at least one input is T, 
hence it is a satisfying assignment. 
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Coping with NP-hardness 
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Coping with NP-Hardness 

Is your real problem a special subcase? 
E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- 
vs 2-coloring 
E.g. only need planar-/interval-/degree 3 graphs, 
trees,…? 

Guaranteed approximation good enough? 
E.g. Euclidean TSP within 1.5 * Opt in poly time 

Fast enough in practice (esp. if n is small),  
E.g. clever exhaustive search like dynamic 
programming, backtrack, branch & bound, pruning 

Heuristics – usually a good approx and/or fast 
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           Example: 
           b = 34 

NP-complete problem: TSP 

Input: An undirected 
graph G=(V,E) with 
integer edge weights, 
and an integer b. 
 
Output: YES iff there is a 
simple cycle in G 
passing through all 
vertices (once), with total 
cost ≤ b. 



Recall NN Heuristic–go to nearest unvisited vertex 
 
 
 
Fact: NN tour can be about (log n) x opt, i.e.  
 
 
 
 
(above example is not that bad) 
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limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic 



A TSP tour visits all vertices, so contains a spanning 
tree, so cost of min spanning tree < TSP cost. 

Find MST 

Find “DFS” Tour 

Shortcut 

TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP 

5 

4 

2 
5 

6 

4 

7 

8 

3 

2x Approximation  
to EuclideanTSP 
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≤5+2+3+5

≤4+3

n points in space, Euclidean 
distance, all possible edges; 
example omits edges for clarity 



1.5x Approximation to 
EuclideanTSP 

Find MST (solid edges) 

Connect odd-degree tree vertices (dotted) 

Find min cost matching among them (thick) 

Find Euler Tour (thin) 

Shortcut (dashed) 

Shortcut  ≤ ET ≤ MST + TSP/2 < 1.5* TSP 

 
Cost of matching ≤ 
TSP/2 (next slide) 

5 

3 

4 

2 
5 
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       Matching ≤ TSP/2 

Oval = TSP 

Big dots = odd tree nodes  
(Exercise: show every graph has an  
even number of odd degree vertices)  

Blue, Green = 2 matchings 

Blue + Green ≤ TSP (triangle inequality) 

So min matching ≤ TSP/2 
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Progress on TSP approximation 

This 1.5x approximation was the best know for ≈ 35 years 
 
CSE faculty member Shayan Oveis Gharan with collaborators 
Saberi and Singh improved on this recently; you might enjoy 
watching the recording of the colloquium he gave on this in 
April, 2013: 

New Approximation Algorithms for 
the Traveling Salesman Problem 

 
(http://www.cs.washington.edu/events/colloquia/search/details?id=2360) 
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P / NP Summary 
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P 

Many important problems are in P: solvable in deterministic 
polynomial time 

 Details are the fodder of algorithms courses.  We’ve seen a few 
examples here, plus many other examples in other courses 

Few problems not in P are routinely solved;  
 For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions” 

A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve 
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NP 

The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because 

a) they’re very commonly encountered, probably because 
b) they arise naturally from basic “search” and 

“optimization” questions. 
 
Definition: poly time verifiable;  

“guess and check”, “is there a…” – are also useful views 
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NP-completeness 

Defn & Properties of ≤p 
 
A is NP-hard: everything in NP reducible to A: ∀X∈NP, X ≤p A 
A is NP-complete: NP-hard and in NP:          above, and A ∈ NP 

 “the hardest problems in NP” 
 “All alike under the skin” 

Most known natural problems in NP are complete 
 #1: 3CNF-SAT 
 Many others: Clique, IndpSet, 3Color, KNAP, HamPath, … 
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NP

P

Exp
Worse… 

NP-C Summary 

Big-O     –  good 
P           –  good 
Exp        –  bad 
Exp, but hints help?  NP 
NP-hard, NP-complete – bad (I bet) 
To show NP-complete – reductions 
NP-complete = hopeless? – no, but you  
  need to lower your expectations:  
  heuristics, approximations and/or small instances. 



Common Errors in  
NP-completeness Proofs 

Backwards reductions 
Bipartiteness ≤p SAT is true, but not so useful.  
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.) 

Sloooow Reductions  
“Find a satisfying assignment, then output…” 

Half Reductions 
E.g., after removing one of the “slack” weights in the 
KNAP reduction, still true that KNAP sol ⇒ SAT sol, but 
no longer vice versa. Adding another slack does opposite. 
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“I can’t find an efficient algorithm, but neither can all these 
famous people.”                                    [Garey & Johnson, 1979] 

The Big Boss is 

IN 
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NP-completeness might save 
your job someday … 
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