
CSE 421
Algorithms

NP-Completeness

(Chapter 8)

1

What can we feasibly compute?

Focus so far has been to give good algorithms for
specific problems (and general techniques that help do
this).

Now shifting focus to problems where we think this is
impossible. Sadly, there are many…

2

Polynomial Time

3

4

The class P

Definition: P = the set of (decision) problems solvable
by computers in polynomial time, i.e., T(n) = O(nk) for
some fixed k (indp of input).
These problems are sometimes called tractable
problems.

Examples: sorting, shortest path, MST, connectivity,
RNA folding & other dyn. prog., flows & matching
– i.e.: most of this qtr

(exceptions: Change-Making/Stamps, Knapsack, TSP)

(defined later)

•  n2000 is not a nice time bound
•  differences among n, 2n and n2 are not negligible.
But, simple theoretical tools don’t easily capture such
differences, while exponential vs polynomial is a
qualitative difference potentially more amenable to
theoretical analysis.

“Problem is in P” a starting point for more detailed analysis
“Problem is not in P” may suggest that you need to shift to
a more tractable variant / lower your expectations

Why “Polynomial”?

5

6

22n

2n/10

1000n2

22n

2n/10

1000n2

Polynomial vs
Exponential Growth

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 2 x 1012

O(n2) n0 → √2 n0 106 1.4 x 106

O(n3) n0 → 3√2 n0 104 1.25 x 104

2n /10 n0 → n0+10 400 410
2n n0 → n0 +1 40 41

Another view of Poly vs Exp

Next year’s computer will be 2x faster. If I can
solve problem of size n0 today, how large a
problem can I solve in the same time next year?

7

Two Problems

How hard are they? We don’t fully know…

8

The Independent Set Problem

Given: a graph G=(V,E) and an integer k
Question: is there U ⊆ V with |U| ≥ k s.t.
no pair of vertices in U is joined by an edge?
What’s it good for?

E.g., if nodes = web pages, and edges join “similar” pages, then pages
forming an independent set are likely to represent distinctly different
topics
E.g., if nodes = courses and edges = a student is co-enrolled, then an
independent set is a set of courses whose finals could scheduled
simultaneously

How hard is it?

9

10

Boolean Satisfiability

Boolean variables x1, ..., xn
taking values in {0,1}. 0=false, 1=true

Literals
xi or ¬xi for i = 1, ..., n

Clause
a logical OR of one or more literals
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

CNF formula (“conjunctive normal form”)
a logical AND of a bunch of clauses

11

Boolean Satisfiability

CNF formula example
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable

the one above is, the following isn’t
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

Satisfiability: Given a CNF formula F, is it satisfiable?

12

Satisfiable?
(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

Satisfiability

What’s it good for?
Theorem provers
Circuit validation
Analysis of program logic
Etc.

How hard is it?

Don’t know fully
Exponential time is easily possible (try all 2n assignments)
But no poly time solution is known

13

Reduction, I

14

15

Reductions: a useful tool

Definition: To “reduce A to B” means to solve A,
given a subroutine solving B.

Example: reduce MEDIAN to SORT

Solution: sort, then select (n/2)nd

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

Another Example of Reduction

reduce BIPARTITE_MATCHING to MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f

16

17

“complexity of A” ≤ “complexity of B” + “complexity of reduction”

Reductions & Time

Definition: To reduce A to B means to solve A,
given a subroutine solving B.

If setting up call, etc., is fast, then a fast algorithm
for B implies (nearly as) fast an algorithm for A

Contrapositive: If every algorithm for A is slow,
then no algorithm for B can be fast.

po
ly

-t
im

e,

fo
r

ou
r

us
es

SAT and Independent Set

They are superficially different problems,
but are intimately related at a deep level

18

19

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

20

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

21

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

22

k=3

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

23

k=3

x3

¬x1

x3

3SAT ≤p IndpSet

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1 ∨ x3)

¬x3

¬x2

x1x1

x2

¬x3

24

f =

3-SAT Instance:
– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

IndpSet Instance:
–  k = q
–  G = (V, E)
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }

3SAT ≤p IndpSet

25

k=2

3SAT ≤p IndpSet

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

¬x3

¬x2

x1x1

x2

¬x3

26

3SAT ≤p IndpSet

k=3

Correctness of “3SAT ≤p IndpSet”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group;
connect all complementary literal pairs (x, ¬x). Output graph G plus integer k =
number of clauses. Note: f does not know whether formula is satisfiable or not; does
not know if G has k-IndpSet; does not try to find satisfying assignment or set.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add
corresponding node of each triangle to set. Show it is an IndpSet: 1 per triangle
never conflicts w/ another in same triangle; only true literals (but perhaps not all
true literals) picked, so not both ends of any (x, ¬x) edge.
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps
partial) truth assignment since no (x, ¬x) pair picked. It satisfies c since there is
one selected node in each clause triangle (else some other clause triangle has > 1
selected node, hence not an independent set.)

27

28

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

Utility of “3SAT ≤p IndpSet”

Suppose we had a fast algorithm
for IndpSet, then we could
get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Independent
Set instance y = f(w) as above, run the fast
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y
has a Independent Set of the given size”

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
Independent Set either.

“3SAT ≤p IndpSet” Retrospective

Previous slides: two suppositions
Somewhat clumsy to have to state things that way.
Alternative: abstract out the key elements, give it a
name (“polynomial time mapping reduction”), then
properties like the above always hold.

29

Reduction, II

Polynomial time “mapping” reduction

30

Decision Problems

Most of NP theory NP is framed for decision problems, i.e.,
problems for which the desired answer is YES/NO, e.g.

•  “Is there a satisfying assignment for formula f?” or
•  “Does graph G have an independent set of size k?”

Notation: for a decision problem A, we view A as the set of
YES instances: i.e., “x ∈ A” means “x is a YES instance of A”.
E.g., examples above become:

•  “f ∈ SAT ?” and
•  “(G, k) ∈ IndpSet ?”

 31

32

Polynomial-Time Reductions

Definition: Let A and B be two decision problems.
A is polynomially (mapping) reducible to B (A ≤p B) if
there exists a polynomial-time algorithm f that
converts each instance x of problem A to an
instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

x ∈ A ⇔ f(x) ∈ B

The notation “A ≤p B” is meant to suggest “A is easier than B”, or
more precisely, “A is not more than polynomially harder than B”

33

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)

Defn: A ≤p B “A is polynomial-time reducible to B,”
iff there is a polynomial-time computable function f
such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f ”

Theorem:
(1) A ≤p B and B ∈ P ⇒ A ∈ P
(2) A ≤p B and A ∉ P ⇒ B ∉ P
(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)

polynomial

Another Example Reduction

SAT to Subset Sum (Knapsack)

34

Subset-Sum, AKA Knapsack

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }

wi’s and C encoded in radix r ≥ 2. (Decimal used in

following example.)

Theorem: 3-SAT ≤p KNAP
Pf: given formula with p variables & q clauses, build KNAP instance with

2(p+q) wi’s, each with (p+q) decimal digits. See examples below.

35

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

36

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

37

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

38

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

39
What/How Many Satisfying Assignments/KNAP solutions?

3-SAT ≤p KNAP

40

f =

3-SAT Instance:
– Variables: x1, x2, …, xp
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

KNAP Instance:
–  2(p+q) wi’s, each with (p+q) decimal digits, mostly 0
–  For the 2p “literal” weights, a single 1 in H.O. p digits  

marks which variable; 1’s in L.O. q digits mark each  
claus containing that literal.

–  Two “slacks” per clause; single 1 marks the clause.
–  Knapsack Capacity C = 11..133..3 (p 1’s, q 3’s)

3-SAT ≤p KNAP

Correctness

Poly time for reduction is routine; details omitted. Note that it does not look
at satisfying assignment(s), if any, nor at subset sums (but the problem
instance it builds captures one via the other...)

If formula is satisfiable, select the literal weights corresponding to the true
literals in a satisfying assignment. If that assignment satisfies k literals in a
clause, also select (3 - k) of the “slack” weights for that clause. Total = C.

Conversely, suppose KNAP instance has a solution. Columns are decoupled
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are
decimal). Since H.O. p digits of C are 1, exactly one of each pair of literal
weights included in the subset, so it defines a valid assignment. Since L.O.
q digits of C are 3, but at most 2 “slack” weights contribute to each, at
least one of the selected literal weights must be 1 in that clause, hence the
assignment satisfies the formula.

41

Decision vs Search Problems

42

The Clique Problem

Given: a graph G=(V,E) and an integer k
Question: is there a subset U of V with
|U| ≥ k such that every pair of vertices in
U is joined by an edge.

E.g., if nodes are web pages, and edges join “similar” pages,
then pages forming a clique are likely to be about the same
topic

43

Problem Types

A clique in an undirect graph G=(V,E) is a
subset U of V such that every pair of
vertices in U is joined by an edge.

E.g., mutual friends on facebook, genes that vary together

An optimization problem: How large is the largest clique in G

A search problem: Find the/a largest clique in G
A search problem: Given G and integer k, find a k-clique in G
A decision problem: Given G and k, is there a k-clique in G
A verification problem: Given G, k, U, is U a k-clique in G

44

“Problem” – the general case
Ex: The Clique Problem: Given a graph G and an
integer k, does G contain a k-clique?

“Problem Instance” – the specific cases
Ex: Does contain a 4-clique? (no)
Ex: Does contain a 3-clique? (yes)

Problems as Sets of “Yes” Instances
Ex: CLIQUE = { (G,k) | G contains a k-clique }

E.g., (, 4) ∉ CLIQUE
E.g., (, 3) ∈ CLIQUE

Some Convenient Technicalities

45

Beyond P

46

Beyond P?

There are many natural, practical problems for
which we don’t know any polynomial-time
algorithms:
 e.g. SAT, IndpSet, CLIQUE, KNAP, TSP, …

Lack of imagination or intrinsic barrier?

47

NP

48

49

NP

P

Exp
And
 worse!

Roadmap

Not every problem is easy (in P)

Exponential time is bad

Worse things happen, too

There is a very commonly-seen
class of problems, called NP, that
appear to require exponential time
(but unproven)

Review: Some Problems

Quadratic Diophantine Equations
Clique
Independent Set
Euler Tour
Hamilton Tour
TSP
3-Coloring
Partition
Satisfiability
Short Paths
Long Paths

All of the form: Given
input X, is there a Y
with property Z?
Furthermore, if I had a
purported Y, I could
quickly test whether it
had property Z

50

51

Common property of these problems:
Discrete Exponential Search

 Loosely–find a needle in a haystack
“Answer” to a decision problem is literally just yes/no, but
there’s always a somewhat more elaborate “solution” (aka
“hint” or “certificate”; what the search version would
report) that transparently‡ justifies each “yes” instance (and
only those) – but it’s buried in an exponentially large search
space of potential solutions.

‡Transparently = verifiable in polynomial time

Defining NP: Informally

NP is the set of decision problems where
 There is a closely related search problem such that
 For all “Yes” instances of the decision version
 If I could guess a solution to the search problem
 You could “check” my guess quickly (P-time)

But
 Your check wouldn’t be fooled by anything I say
about a “No” instance

52

53

Defining NP: formally

A decision problem L is in NP iff there is a polynomial time
procedure v(-,-), (the “verifier”) and an integer k such that

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES
and
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES

(“Hints,” sometimes called “certificates,” or “witnesses”, are
just strings. Think of them as exactly what the search version
would output.)
Note 1: a problem is “in NP” if it can be posed as an exponential
search problem, even if there may be other ways to solve it.

Note 2: his definition is not quickly actionable without a way to find
h.

Example: Clique

“Is there a k-clique in this graph?”
any subset of k vertices might be a clique
there are many such subsets, but I only need to find one
if I knew where it was, I could describe it succinctly, e.g.
“look at vertices 2, 3, 17, 42, ...”,
I’d know one if I saw one: “yes, there are edges between
2 & 3, 2 & 17,... so it’s a k-clique”
this can be quickly checked
And if there is no k-clique, I wouldn’t be fooled
by a statement like “look at vertices 2, 3, 17, 42, ...”

54

3 42

2 17

9
11 1

4

3 42

2 17

9
11 1

4

55

More Formally: CLIQUE is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and
 U is a clique in G,
then output “YES”
else output “I’m unconvinced”

Important note: this answer
does NOT mean x ∉ CLIQUE;
just means this h isn’t a k-clique
(but some other might be).

56

Is it correct?

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique
and
No hint can fool v into saying yes if either x isn’t
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2

Example: SAT

“Is there a satisfying assignment for this Boolean
formula?”

any assignment might work
there are lots of them
I only need one
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”
I’d know one if I saw one: “yes, plugging that in, I see formula = T...”
and this can be quickly checked
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F”

57

58

More Formally: SAT ∈ NP

Hint: the satisfying assignment A
Verifier: v(C, A) = syntax(C, A) && satisfies(C, A)

Syntax: True iff C is a well-formed CNF formula & A is a
truth-assignment to its variables
Satisfies: plug A into C; check that it evaluates to True

Correctness:
If C is satisfiable, it has some satisfying assignment A, and
we’ll recognize it
If C is unsatisfiable, it doesn’t, and we won’t be fooled

Analysis: |A| < |C|, and time for v(C,A) ~ linear in |C|+|A|

IndpSet is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and
 U is an Indp Set in G,
then output “YES”
else output “I’m unconvinced”

Important note: this answer does
NOT mean x ∉ IndpSet; just
means this h isn’t a k-IndpSet
(but some other might be). 59

Is it correct?

For every x = (G,k) such that G contains a k-
IndpSet, there is a hint h that will cause v(x,h) to say
YES, namely h = a list of the vertices in such a set
and
No hint can fool v into saying yes if either x isn’t
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any Indp Set of size k (the
interesting case)
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2

60

Keys to showing that
a problem is in NP

What’s the output? (must be YES/NO)
What’s the input? Which are YES?
For every given YES input, is there a hint that would help, i.e.
allow verification in polynomial time? Is it polynomial length?

OK if some inputs need no hint

For any given NO input, is there a hint that would trick you?

61

Two Final Points About “Hints”

1.  Hints/verifiers aren’t unique. The “… there is a …”
framework often suggests their form, but many
possibilities
 “is there a clique” could be verified from its vertices, or its edges, or
all but 3 of each, or all non-vertices, or… Details of the hint string,
the verifier and its time bound all shift, but same bottom line.

2. In NP doesn’t prove its hard

 “Short Path” or “Small Spanning Tree” or “Large Flow” can be
formulated as “…there is a…,” but, due to very special structure of
these problems, we can quickly find the solution even without a
hint. The mystery is whether that’s possible for the other problems,
too. 62

Contrast: problems not in NP (probably)

Rather than “there is a…” maybe it’s
“no…” or “for all…” or “the smallest/largest…”

E.g.
 UNSAT: “no assignment satisfies formula,” or

“for all assignments, formula is false”
Or
 NOCLIQUE: “every subset of k vertices is not a k-clique”

 MAXCLIQUE: “the largest clique has size k”
Unlikely that a single, short hint is sufficiently informative to
allow poly time verification of properties like these (but this
is also an important open problem). 63

NP-completeness

64

NP-Completeness

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.

Definition: Problem B is NP-complete
if:

(1) B belongs to NP, and
(2) B is NP-hard.

NP

P

Exp

NP-Hard

NP-Complete

65

NP-completeness (cont.)

Thousands of important problems have
been shown to be NP-complete.

The general belief is that there is no efficient
algorithm for any NP-complete problem, but no
proof of that belief is known.

Examples: SAT, clique, vertex cover, IndpSet,
Ham tour, TSP, bin packing… Basically,
everything we’ve seen that’s in NP but not
known to be in P 66

NP

P

Exp

NP-Complete

Worse

Proving a problem is NP-
complete

Technically, for condition (2) we have to show
that every problem in NP is reducible to B.
(Sounds like a lot of work!)
For the very first NP-complete problem (SAT)
this had to be proved directly.
However, once we have one NP-complete
problem, then we don’t have to do this every
time.
Why? Transitivity of ≤p.

67

68

Alt way to prove NP-completeness

Lemma: Problem B is NP-complete iff:
(1) B belongs to NP, and
(2’) Some NP-complete problem A is polynomial-
time reducible to B.

That is, to show NP-completeness of a new
problem B in NP, it suffices to show that SAT or
any other NP-complete problem is polynomial-time
reducible to B.

69

Ex: IndpSet is NP-complete

3-SAT is NP-complete (S. Cook; see below)
3-SAT ≤p IndpSet
IndpSet is in NP
Therefore IndpSet is also NP-complete

So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP

Ditto for KNAP, 3COLOR, …

we showed these earlier

Cook’s Theorem

SAT is NP-Complete

70

“NP-completeness”

Cool concept, but are there
any such problems?

Yes!

Cook’s theorem: SAT is NP-complete

71

Why is SAT NP-complete?

Cook’s proof is somewhat involved. I’ll sketch it
below. But its essence is not so hard to grasp:

Encode “solution” using Boolean variables. SAT mimics “is there a
solution” via “is there an assignment”. The “verifier” runs on a digital
computer, and digital computers just do Boolean logic. “SAT” can
mimic that, too, hence can verify that the assignment actually encodes
a solution.

Generic “NP” probs: expo. search–
is there a poly size “solution,”
verifiable by computer in poly time

“SAT”: is there a poly size
assignment (the hint) satisfying
the formula (the verifier)

72

Examples

Again, Cook’s theorem does this for generic NP
problems, but you can get the flavor from a few specific
examples

73

3-Coloring ≤p SAT

Given G = (V, E)
∀ i in V, variables ri, gi, bi encode color of i

∧i ∈ V [(ri ∨ gi ∨ bi) ∧
 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]

74

adj nodes ⇔ diff colors
no node gets 2
every node gets a color

hi
nt

ve

ri
fie

r

Equivalently:
(¬(ri ∧ gi)) ∧ (¬(gi ∧ bi)) ∧ (¬(bi ∧ ri)) ∧
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)]

Independent Set ≤p SAT

Given G = (V, E) and k
∀ i in V, variable xi encodes inclusion of i in IS

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”

75

every edge has one end
or other not in IS

(no edge connects 2 in IS)

possible in 3 CNF, but technically
messy, so details omitted;

basically, count 1’s

hi
nt

ve

ri
fie

r

Vertex cover ≤p SAT

Given G = (V, E) and k
∀ i in V, variable xi encodes inclusion of i in cover

∧(i,j) ∈ E (xi ∨ xj) ∧ “number of True xi is ≤ k”

every edge covered
by one end or other

possible in 3 CNF, but technically
messy; basically, count 1’s

hi
nt

ve

ri
fie

r

76

Hamilton Circuit ≤p SAT

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)]
∀ i,j in V, variables xij, encode “j follows i in the tour”

∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n”

the path follows
actual edges

every row/column
has exactly 1 one

bit

Xn = I, no smaller
power k has Xkii=1

hi
nt

ve

ri
fie

r

77

Perfect Matching ≤p SAT

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)]
∀ i<j in V, variable xij, encodes “edge i,j is in matching”

(∧(i<j) (xij ⇒ eij)) ∧ (∧(i<j<k) (xij ⇒ ¬xik)) ∧ (∧i (∨j xij))

matching edges
are actual edges

all vertices
are matched

hi
nt

ve

ri
fie

r

it’s a matching: if
edge (i,j) included,
then (i,k) excluded

78

Cook’s Theorem

Every problem in NP is reducible to SAT

Idea of proof is extension of above examples, but done in a
general way, based on the definition of NP – show how the
SAT formula can simulate whatever (polynomial time)
computation the verifier does.

Cook proved it directly, but easier to see via an
intermediate problem – Satisfiability of Circuits rather
than Formulas
 79

Boolean Circuits
(AKA combinational logic networks)

Directed acyclic graph (yes, “circuit” is a misnomer…)
Vertices = Boolean logic gates (∧, ∨, ¬, …) + inputs
Multiple input bits (x1, x2, …)
Single output bit (w)
Gate values as expected (e.g., propagate vals by depth

to xi’s)

∧ ¬ ∨
x1

x2

w

80

Boolean Circuits and Complexity

Two Problems:
 Circuit Value: given a circuit and an assignment of
values to its inputs, is its output = 1?
 Circuit SAT: given a circuit, is there an assignment of values
to its inputs such that output =1?

Complexity:
 Circuit Value Problem is in P
 Circuit SAT Problem is in NP

Given implementation of computers via Boolean circuits, it
may be unsurprising that they are complete in P/NP, resp. Sk

et
ch

ed
 b

el
ow

81

Detailed Logic Diagram,
Intelorola Pentathlon® 66000

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock 82

P Is Reducible To The
Circuit Value Problem

Registers/Latches/Memory

 Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock

Combinational Logic

Combinational Logic

Combinational Logic

Answer yes?

T

T
… Input … 0 1 0 0 1 1

83

…Input… 0 1 0 1 ??..Hint..??

NP Is Reducible To The
Circuit Satisfiability Problem

Registers/Latches/Memory

 Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock

Combinational Logic

Combinational Logic

Combinational Logic

T

T

The Verifier
Algorithm

Answer yes? 84

Correctness of NP ≤p CircuitSAT

Fix an arbitrary NP-problem, a verifier alg V(x,h) for it, and a
bound nk on hint length/run time of V, show:

1) In poly time, given x, can output a circuit C as above,
2) ∃ h s.t. V(x,h)=“yes” ⇒ C is satisfiable (namely by h), and
3) C is satisfiable (say, by h) ⇒ ∃ h s.t. V(x,h)=“yes”

1)  is perhaps very tedious, but mechanical–you are

“compiling” the verifier’s code into hardware (just enough
hardware to handle all inputs of length |x|)

2) & 3) exploit the fact that C simulates V, with C’s “hint bit”
inputs exactly corresponding to V’s input h.

85

(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3

Replace with 3-CNF Equivalent:

∧ ¬ ∨
x1

x2 w1 w2 w3

Circuit-SAT
≤p 3-SAT

x1 x2 w1 x1∧x2 ¬(w1⇔(x1∧x2))
0 0 0 0 0
0 0 1 0 1 ← ¬x1 ∧ ¬x2 ∧ w1
0 1 0 0 0
0 1 1 0 1 ← ¬x1 ∧ x2 ∧ w1
1 0 0 0 0
1 0 1 0 1 ← x1 ∧ ¬x2 ∧ w1
1 1 0 1 1 ← x1 ∧ x2 ∧ ¬w1
1 1 1 1 0

¬clause
↓

 Truth Table
↓

 DNF
↓

 DeMorgan
↓

CNF

∧ ¬ ∨f() = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…

Q. Why build truth table clause-by-clause vs whole formula? A: So n*23 vs 2n rows
86

Correctness of “Circuit-SAT ≤p 3-SAT”

Summary of reduction function f: Given circuit, add variable for every
gate’s value, build clause for each gate, satisfiable iff gate value variable is
appropriate logical function of its input variables, convert each to CNF
via standard truth-table construction. Output conjunction of all, plus
output variable. Note: as usual, does not know whether circuit or formula are
satisfiable or not; does not try to find satisfying assignment.
Correctness:
Show f is poly time computable: A key point is that formula size is linear
in circuit size; mapping basically straightforward; details omitted.
Show c in Circuit-SAT iff f(c) in SAT:
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by
evaluating the circuit on xi’s gate by gate. Show this satisfies f(c).
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c
(with gate values given by wi’s).
Thus, 3-SAT is NP-complete.

87

Relating P to NP

88

NP

P

89

NP = Polynomial-time
verifiable

P = Polynomial-time

solvable

P ⊆ NP: “verifier” is
just the P-time alg;
ignore “hint”

Complexity Classes

90

The most obvious algorithm for most of these
problems is brute force:

try all possible hints; check each one to see if it works.
Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

 possible k element subsets of n vertices, perhaps k = log n or n/3

etc.

…and to date, every alg, even much less-obvious
ones, are slow, too

!
"

#
$
%

&
k
n

Solving NP problems without hints

91

nk

2nk

accept

Needle
in the

haystack

P vs NP vs Exponential Time

Theorem: Every problem in
NP can be solved
(deterministically) in
exponential time

Proof: “hints” are only nk
long; try all 2nk possibilities,
say, by backtracking. If any
succeed, answer YES; if
all fail, answer NO.

92

NP

P

Exp
And
 worse!

P and NP

Every problem in P is in NP
one doesn’t even need a hint for
problems in P so just ignore any
hint you are given

Every problem in NP is in
exponential time

I.e., P ⊆ NP ⊆ Exp
We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)

E.g., see
CSE 431

93

Does P = NP?

This is the big open question!
To show that P = NP, we have to show that
every problem that belongs to NP can be solved
by a polynomial time deterministic algorithm.
Would be very cool, but no one has shown this
yet.
(And it seems unlikely to be true.)

Polynomial Time Reduction, III

94

95

Two definitions of “A ≤p B”

Book uses general definition: “could solve A in
poly time, if I had a poly time subroutine for B.”

Examples on previous slides are special case:
•  call the subroutine once, report its answer.

This special case is used in ~98% of all
reductions
Largely irrelevant for this course, but if you seem to need 1st defn,
e.g. on HW, fine, but there’s perhaps a simpler way…

K
ar

p

C
oo

k

Example of the difference

CLIQUE = { (G,k) | G has a k-clique }
MAXCLIQUE = { (G,k) | G’s largest clique is size k }
Q: is MAXCLIQUE ∈ NP?
A: probably not; a hint might give you a k-clique (& you could check it),

but what “hint” would also convince you of absence of (k+1)-cliques?

Theorem: CLIQUE ≤p MAXCLIQUE, so later is NP-Hard

Pf: Ptime alg for
CLIQUE, given
hypothetical
ptime subr for
MAXCLIQUE:

Exercise: show MAXCLIQUE ≤p CLIQUE

CLIQUE_Alg(G,k):
 for j=k,…,|G| {

 if MAXCLIQUE_Subr(G,j) says “yes”
 then return “Yes,(G,k) ∈ CLIQUE”

 }
 return “No,(G,k) ∉ CLIQUE”

96

Cook

Cook

97

More on Cook vs Karp Reductions

Key properties shown
earlier hold for both Cook
& Karp reductions, but not
everything. Differences are
not critical for this course
but, e.g.

Theorem: A ≤Karp B and B ∈ NP ⇒ A ∈ NP

whereas, the analogous result for Cook reduction
would imply UNSAT ∈ NP, among other surprises.

p

More Reductions

SAT to Coloring

98

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at most 3
colors to the vertices in G such that no two
adjacent vertices have the same color.

Example:

In NP? Exercise

99

T

F
N

T

F

A 3-Coloring Gadget:

In what ways can this be 3-colored?

100

N

T

F
N

output

inputs

Exercise: find
all colorings
of 5 nodes

A 3-Coloring Gadget:
“Sort of an OR gate“

if output is T, some input must be T
if some input is T, output may be T

NB: this is not the same gadget as used in KT 8.7
101

3-SAT Instance:
– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

3Color Instance:
–  G = (V, E)
–  6 q + 2 n + 3 vertices
–  13 q + 3 n + 3 edges
–  (See Example for details)

3SAT ≤p 3Color

f =

102

x1

¬x1

x2

¬x2

T

F
N

 (x1 ∨ ¬x1 ∨ ¬x1)  
∧  

(¬x1 ∨ x2 ∨ ¬x2)
3SAT ≤p 3Color Example

6 q + 2 n + 3 vertices 13 q + 3 n + 3 edges 103

Correctness of “3SAT ≤p 3Coloring”

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2
“or” gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; graph looks messy, but pattern is basically straightforward.
 • Show c in 3-SAT iff f(c) is 3-colorable:
(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can
color “or” gadgets so output nodes are T since each clause is satisfied.
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example. All square
nodes are T or F (since all adjacent to N). Each variable pair (xi, ¬xi) must have
complementary labels since they’re adjacent. Define assignment based on colors
of xi’s. Clause “output” nodes must be colored T since they’re adjacent to both
N & F. By fact noted earlier, output can be T only if at least one input is T,
hence it is a satisfying assignment.

104

Coping with NP-hardness

105

106

Coping with NP-Hardness

Is your real problem a special subcase?
E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3-
vs 2-coloring
E.g. only need planar-/interval-/degree 3 graphs,
trees,…?

Guaranteed approximation good enough?
E.g. Euclidean TSP within 1.5 * Opt in poly time

Fast enough in practice (esp. if n is small),
E.g. clever exhaustive search like dynamic
programming, backtrack, branch & bound, pruning

Heuristics – usually a good approx and/or fast

107

5

3

4 6

4 7
2

5

8

 Example:
 b = 34

NP-complete problem: TSP

Input: An undirected
graph G=(V,E) with
integer edge weights,
and an integer b.

Output: YES iff there is a
simple cycle in G
passing through all
vertices (once), with total
cost ≤ b.

Recall NN Heuristic–go to nearest unvisited vertex

Fact: NN tour can be about (log n) x opt, i.e.

(above example is not that bad)

108
€

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic

A TSP tour visits all vertices, so contains a spanning
tree, so cost of min spanning tree < TSP cost.

Find MST

Find “DFS” Tour

Shortcut

TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP

5

4

2
5

6

4

7

8

3

2x Approximation
to EuclideanTSP

109

≤5+2+3+5

≤4+3

n points in space, Euclidean
distance, all possible edges;
example omits edges for clarity

1.5x Approximation to
EuclideanTSP

Find MST (solid edges)

Connect odd-degree tree vertices (dotted)

Find min cost matching among them (thick)

Find Euler Tour (thin)

Shortcut (dashed)

Shortcut ≤ ET ≤ MST + TSP/2 < 1.5* TSP

Cost of matching ≤
TSP/2 (next slide)

5

3

4

2
5

110

 Matching ≤ TSP/2

Oval = TSP

Big dots = odd tree nodes
(Exercise: show every graph has an
even number of odd degree vertices)

Blue, Green = 2 matchings

Blue + Green ≤ TSP (triangle inequality)

So min matching ≤ TSP/2

111

Progress on TSP approximation

This 1.5x approximation was the best know for ≈ 35 years

CSE faculty member Shayan Oveis Gharan with collaborators
Saberi and Singh improved on this recently; you might enjoy
watching the recording of the colloquium he gave on this in
April, 2013:

New Approximation Algorithms for
the Traveling Salesman Problem

(http://www.cs.washington.edu/events/colloquia/search/details?id=2360)

112

P / NP Summary

113

P

Many important problems are in P: solvable in deterministic
polynomial time

 Details are the fodder of algorithms courses. We’ve seen a few
examples here, plus many other examples in other courses

Few problems not in P are routinely solved;
 For those that are, practice is usually restricted to small instances, or
we’re forced to settle for approximate, suboptimal, or heuristic
“solutions”

A major goal of complexity theory is to delineate the
boundaries of what we can feasibly solve

114

NP

The tip-of-the-iceberg in terms of problems conjectured not
to be in P, but a very important tip, because

a) they’re very commonly encountered, probably because
b) they arise naturally from basic “search” and

“optimization” questions.

Definition: poly time verifiable;

“guess and check”, “is there a…” – are also useful views

115

NP-completeness

Defn & Properties of ≤p

A is NP-hard: everything in NP reducible to A: ∀X∈NP, X ≤p A
A is NP-complete: NP-hard and in NP: above, and A ∈ NP

 “the hardest problems in NP”
 “All alike under the skin”

Most known natural problems in NP are complete
 #1: 3CNF-SAT
 Many others: Clique, IndpSet, 3Color, KNAP, HamPath, …

116

117

NP

P

Exp
Worse…

NP-C Summary

Big-O – good
P – good
Exp – bad
Exp, but hints help? NP
NP-hard, NP-complete – bad (I bet)
To show NP-complete – reductions
NP-complete = hopeless? – no, but you
 need to lower your expectations:
 heuristics, approximations and/or small instances.

Common Errors in
NP-completeness Proofs

Backwards reductions
Bipartiteness ≤p SAT is true, but not so useful.
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.)

Sloooow Reductions
“Find a satisfying assignment, then output…”

Half Reductions
E.g., after removing one of the “slack” weights in the
KNAP reduction, still true that KNAP sol ⇒ SAT sol, but
no longer vice versa. Adding another slack does opposite.

118

“I can’t find an efficient algorithm, but neither can all these
famous people.” [Garey & Johnson, 1979]

The Big Boss is

IN

119

NP-completeness might save
your job someday …

120

