CSE 421

Introduction to Algorithms

The Network Flow Problem

The Network Flow Problem

How much stuff can flow from s to t ?

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph $G=(V, E)$
Two vertices s,t in V

$$
\text { (} s=\text { source, } t=\text { sink) }
$$

A capacity $c(u, v) \geq 0$
for each $(u, v) \in E$ (and $c(u, v)=0$ for all nonedges (u, v))

```
(technically, not quite the same definition as in the book...)
```

Find:
A flow function $f: V \times V \rightarrow R$ s.t., for all u, v :

$$
-f(u, v) \leq c(u, v) \quad \text { [Capacity Constraint] }
$$

$-f(u, v)=-f(v, u)$

- if $u \neq s, t, f(u, V)=0 \quad$ [Flow Conservation]

Maximizing total flow $|f|=f(s, V)$

Notation:

$$
f(X, Y)=\sum_{x \in X} \sum_{y \in Y} f(x, y)
$$

Example: A Flow Function

"flow"/"capacity", not 0.66...

$f(s, u)=f(u, t)=2$
$f(u, s)=f(t, u)=-2($ Why? $)$
$f(s, t)=-f(t, s)=0$ (In every flow function for this G. Why?)
$f(u, V)=\sum_{v \in V} f(u, v)=f(u, s)+f(u, t)=-2+2=0$

Example: A Flow Function

Not shown: $f(u, v)$ if ≤ 0
Note: max flow ≥ 4 since f is a flow, $|f|=4$

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G

Pick such a path, p

Max Flow via a Greedy Alg?

This does NOT always find a max flow:
If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,

Flow stuck at 2, but 3 possible (above).

A Brief History of Flow

\#	Year	Discoverer(s)
1	1951	Dantzig
2	1955	Ford \& Fulkerson
3	1970	Dinitz; Edmonds \& Karp
4	1970	Dinitz
5	1972	Edmonds \& Karp; Dinitz
6	1973	Dinitz;Gabow
7	1974	Karzanov
8	1977	Cherkassky
9	1980	Gali \& Naamad
10	1983	Sleator \& Tarjan
11	1986	Goldberg \& Tarjan
12	1987	Ahuja \& Orlin
13	1987	Ahuja et al.
14	1989	Cheriyan \& Hagerup
15	1990	Cheriyan et al.
16	1990	Alon
17	1992	King et al.
18	1993	Phillips \& Westbrook
19	1994	King et al.
20	1997	Goldberg \& Rao
․

Bound
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{mC}\right)$
$\mathrm{O}(\mathrm{nmC})$
$\mathrm{O}\left(\mathrm{nm}^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$
$O\left(m^{2} \log C\right)$
$\mathrm{O}(\mathrm{nm} \log \mathrm{C})$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{sqrt}(\mathrm{m})\right)$
$\mathrm{O}\left(\mathrm{nm} \log ^{2} \mathrm{n}\right)$
$O(n m \log n)$
$O\left(n m \log \left(n^{2} / m\right)\right)$
$\mathrm{O}\left(\mathrm{nm}+\mathrm{n}^{2} \log \mathrm{C}\right)$
O(nm logn n sqrt($\log C$)/(m+2))
$E\left(n m+n^{2} \log ^{2} n\right)$
$O\left(n^{3} / \log n\right)$
$O\left(n m+n^{8 / 3} \log n\right)$
$\mathrm{O}\left(\mathrm{nm}+\mathrm{n}^{2+\varepsilon}\right)$
$O\left(n m\left(\log _{m / n} n+\log ^{2+\varepsilon} n\right)\right.$
$O\left(n m\left(\log _{m /(n \log n)} n\right)\right.$
$O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log C\right) ; O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log C\right)$

```
n = # of vertices
```

$\mathrm{m}=$ \# of edges
C = Max capacity

Greed Revisited

$\sqrt{\checkmark}$

Residual Capacity

The residual capacity (w.r.t. f) of (u, v) is $c_{f}(u, v)=c(u, v)-f(u, v)$
E.g.:
$c_{f}(s, b)=7 ;$
$c_{f}(a, x)=1 ;$
$c_{f}(x, a)=3 ;$

$c_{f}(x, t)=0$ (a saturated edge)

Residual Networks \& Augmenting Paths

The residual network (w.r.t. f) is the graph $G_{f}=\left(V, E_{f}\right)$, where

$$
E_{f}=\left\{(u, v) \mid c_{f}(u, v)>0\right\}
$$

An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_{f}

A Residual Network

An Augmenting Path

Lemma 1

If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_{p}, the min residual capacity of p 's edges.

Augmenting A Flow

Augmenting A Flow

Lemma 1': Augmented Flows are Flows

If f is a flow $\& p$ an augmenting path of capacity c_{p}, then f^{\prime} is also a valid flow, where

$$
f^{\prime}(u, v)= \begin{cases}f(u, v)+c_{p}, & \text { if }(u, v) \text { in path } p \\ f(u, v)-c_{p}, & \text { if }(v, u) \text { in path } p \\ f(u, v), & \text { otherwise }\end{cases}
$$

Proof:
a) Flow conservation - easy
b) Skew symmetry - easy
c) Capacity constraints - pretty easy; next slides

Lma 1': Augmented Flows are Flows
 $f^{\prime}(u, v)= \begin{cases}f(u, v)+c_{p}, & \text { if }(u, v) \text { in path } p \\ f(u, v)-c_{p}, & \text { if }(v, u) \text { in path } p \\ f(u, v), & \text { otherwise }\end{cases}$

f a flow \& p an aug path of cap c_{p}, then f^{\prime} also a valid flow.
Proof (Capacity constraints):
$(u, v),(v, u)$ not on path: no change (u, v) on path:

$$
\begin{aligned}
f^{\prime}(u, v) & =f(u, v)+c_{p} \\
& \leq f(u, v)+c_{f}(u, v) \\
& =f(u, v)+c(u, v)-f(u, v) \\
& =c(u, v) \\
f^{\prime}(v, u) & =f(v, u)-c_{p} \\
& <f(v, u) \\
& \leq c(v, u)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Residual Capacity: } \\
& \qquad \begin{array}{l}
0<c_{p} \leq c_{f}(u, v)= \\
c(u, v)-f(u, v)
\end{array}
\end{aligned}
$$

Cap Constraints:

$$
-c(v, u) \leq f(u, v) \leq c(u, v)
$$

Lemma 1' Example - Case 1

G_{f}

Let (u, v) be any edge in augmenting path. Note

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 1: $f(u, v) \geq 0$:

Add forward flow

Lemma 1' Example - Case 2

G_{f}

Let (u, v) be any edge in augmenting path. Note

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 2: $f(u, v) \leq-c_{p}$:
$f(v, u)=-f(u, v) \geq c_{p}$

Cancel/redirect reverse flow

Lemma 1' Example - Case 3

G_{f}

Let (u, v) be any edge in augmenting path. Note

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 3: $-c_{p}<f(u, v)<0: \quad G_{\text {before }}$
???
$G_{\text {after }}$
[E.g., $\left.c_{p}=8, f(u, v)=-5\right]$

Lemma 1' Example - Case 3

G_{f}

Let (u, v) be any edge in augmenting path. Note

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 3: $-c_{p}<f(u, v)<0 \quad G_{\text {before }}$

Both:

$$
c_{p}>f(v, u)>0:
$$

cancel/redirect reverse flow and
add forward flow

Ford-Fulkerson Method

While G_{f} has an augmenting path, augment

Questions:
» Does it halt?
» Does it find a maximum flow?
» How fast?

Cuts

A partition S, T of V is a cut if $s \in S, t \in T$. Capacity of cut S, T is $c(S, T)=\sum_{u \in S} c(u, v)$

Every Flow is a Sum of Paths

Every flow can be decomposed into sum of at most m simple augmenting paths, each using only "real" edges in G.

Pf: Delete all edges with 0 flow. Find a simple $s-t$ path p. Let $d=$ min flow on any edge of p. Reduce flow by d along p. Repeat until flow $=0$
(Note: helps next proof, but not algs, since don't know how to find these paths without flow...)

Lemma 2

For any flow f and any cut S, T, net flow across cut = total flow \leq cut capacity
Proof:
Decompose. Track d_{i} flow units along p_{i} from s to t. Crosses cut an odd \# of times; net $=d_{i} . \sum d_{i}=|f|$ Assign d's to last crossing; it's a forward edge totaled in $C(S, T), \therefore \sum d_{i} \leq C(S, T)$
Cor: Max flow \leq Min cut

Max Flow / Min Cut Theorem

For any flow f, the following are equivalent
(1) $|f|=c(S, T)$ for some cut S, T (a min cut)
(2) f is a maximum flow
(3) f admits no augmenting path

Proof:
(1) \Rightarrow (2): corollary to lemma 2
$(2) \Rightarrow(3)$: contrapositive of lemma 1

$(3) \Rightarrow(1)$
 (no aug) \Rightarrow (cut)

$S=\{u \mid \exists$ an augmenting path wrt f from s to $u\}$

For any (u, v) in $S \times T, \exists$ an augmenting path from s to u, but not to v.
$\therefore(u, v)$ has 0 residual capacity:

$$
\begin{array}{ll}
(u, v) \in E \Rightarrow \text { saturated } & f(u, v)=c(u, v) \\
(v, u) \in E \Rightarrow \text { no flow } & f(u, v)=-f(v, u)=0
\end{array}
$$

This is true for every edge crossing the cut, i.e.

$$
\begin{aligned}
& |f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)= \\
& \quad \sum_{u \in S, v \in T,(u, v) \in E} f(u, v)=\sum_{u \in S, v \in T,(u, v) \in E} C(u, v)=c(S, T)
\end{aligned}
$$

Corollaries \& Facts

If Ford-Fulkerson terminates, then it's found a max flow.
It will terminate if $c(e)$ integer or rational (but may not if they're irrational).
However, may take exponential time, even with integer capacities:

How to Make it Faster

Many possibilities. Three important ones:
Edmonds-Karp '70; Dinitz '70 (below)
$1^{\text {st }}$ "strongly" poly time alg. (next) $\quad T=O\left(n m^{2}\right)$
"Scaling" [Edmonds-Karp, '72; Dinitz '72] do largest edges first; see text 7.3. if $\mathrm{C}=$ max capacity, $\quad T=O\left(m^{2} \log C\right)$
Preflow-Push [Goldberg, Tarjan '86]
see text 7.4 (optional)
$T=O\left(n^{3}\right)$

Edmonds-Karp-Dinitz '70 Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

Time: $O\left(n m^{2}\right)$

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding a back-edge (i.e., an edge (u, v), provided v is nearer than u) proof: BFS is unchanged, since v visited before (u, v) examined

Lemma 3

Let f be a flow, G_{f} the residual graph, and p a shortest augmenting path. Then no vertex is closer to s in the new residual graph G_{f+p} after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS

G_{f}

G_{f},

Theorem 2

The Edmonds-Karp-Dinitiz Algorithm performs $\mathrm{O}(\mathrm{mn})$ flow augmentations

Proof:
$\{u, v\}$ is critical on augmenting path p if it's closest to s having min residual capacity.
Won't be critical again until farther from s.
So each edge critical at most n times.

Augmentation vs BFS Level

Corollary

Edmonds-Karp-Dinitz runs in $O\left(n m^{2}\right)$

Example

See "Edmonds-Karp-Dinitz Example" on course web page

(file)

G_{0} : the flow problem

G_{0} : the flow problem

G_{0} : BFS layering + Aug Path
Critical edge: $\{a, \uparrow\}$

G_{0} : the flow problem
G_{0} : BFS layering + Aug Path
G_{I} : Ist Residual Graph Critical edge: $\{a, f\}$

G_{1} : Ist Residual Graph

G_{1} : Ist Residual Graph
G_{1} : BFS layering + Aug Path
Critical edge: $\{\mathrm{s}, \mathrm{a}\}$

G_{I} : Ist Residual Graph
G_{1} : BFS layering + Aug Path
G_{2} : 2nd Residual Graph
Critical edge: $\{\mathrm{s}, \mathrm{a}\}$

G_{2} : 2nd Residual Graph

G_{2} : 2nd Residual Graph

G_{2} : BFS layering + Aug Path

Critical edge: $\{\mathrm{f}, \mathrm{t}\}$

Critical edge: $\{\mathrm{f}, \mathrm{t}\}$

G_{3} : 3rd Residual Graph

$\mathrm{G}_{3}: 3$ rd Residual Graph

Critical edge: $\{a, f\}$ (for the $2^{\text {nd }}$ time)

Flow Applications

Applications of Max Flow

Many!
Most look nothing like flow, at least superficially, but are deeply connected
Several interesting examples in 7.5-7.13
(7.8-7.11, 7.13 are optional, but interesting.

Airline scheduling and image segmentation are especially recommended.)
A few more in following slides

Flow Integrality Theorem

Useful facts: If all capacities are integers

» Some max flow has an integer value
» Ford-Fulkerson method finds a max flow in which $f(u, v)$ is an integer for all edges (u, v)

A valid flow, but unnecessary

7.6: Disjoint Paths

Given a digraph with designated nodes s, t, are there k edge-disjoint paths from s to t ?
You might try depth-first search; you might fail...
Instead:"edge caps=1, is max flow $\geq k$?" Success!
Max-flow/min-cut also implies max number of edge disjoint paths = min number of edges whose removal separates s from t.
Many variants: node-disjoint, undirected, ...
See 7.6

7.5: Bipartite Maximum Matching

Bipartite Graphs:

$$
\begin{aligned}
& G=(V, E) \\
& V=L \cup R \quad(L \cap R=\varnothing) \\
& E \subseteq L \times R
\end{aligned}
$$

Matching:
A set of edges $M \subseteq E$ such that no two edges touch a common vertex

Problem:

Find a max size matching M

Reducing Matching to Flow

Given bipartite G, build flow network N as follows:

- Add source s, sink t
- Add edges $s \rightarrow L$
- Add edges $R \rightarrow t$
- All edge capacities 1

Theorem:

Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value

$M \rightarrow f$? Easy - send flow only through M
$f \rightarrow M$? Flow Integrality Thm, + cap constraints

Notes on Matching

Max Flow Algorithm is probably overly general here

But most direct matching algorithms use "augmenting path"-type ideas similar to
that in max flow - See text (\& homework?)
Time $m n^{1 / 2}$ possible via Edmonds-Karp

7.12 Baseball Elimination

Baseball Elimination

Team	Wins	Losses	To play	Against $=g_{i j}$			
	w_{i}	I_{i}	g_{i}	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?
» Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
» $w_{i}+g_{i}<w_{j} \Rightarrow$ team i eliminated.
» Sports writers rarely give a deeper analysis
» Sufficient, but not necessary!

Baseball Elimination

Team i	Wins	Losses	To play	Against $=g_{i j}$			
	w_{i}	I_{i}	g_{i}	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?
» Philly can win 83, but still eliminated . . .
» If Atlanta loses a game, then some other team wins one.
Remark. Depends on both how many games already won and left to play, and on which opponents.

Baseball Elimination

Baseball elimination problem.

» Set of teams S.
» Distinguished team $s \in S$.
» Team x has won w_{x} games already.
» Teams x \& y play each other $g_{x y}$ more times.
» Can team s finish with (or tie for) most wins?
l.e., is there a way to allocate wins of the remaining games so that s ends on top?

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?

One unit of flow = one win
Assume team 3 wins all remaining games $\Rightarrow w_{3}+g_{3}$ wins.
Divvy remaining games so that all teams have $\leq w_{3}+g_{3}$ wins.

Baseball Elimination: Max Flow Logic

Team 3 is eliminated iff max flow < games left.
Integrality \Rightarrow each remaining x : y game added to $\#$ wins for x or y.
Capacities on (x, t) edges ensure no team wins too many games.
Capacities on ($s, x-y$) edges ensure no team plays too many games. In max flow, unsaturated source edge = unplayed game; if played, (either) winner would push ahead of team 3

Baseball Elimination: Explanation for Sports Writers

Team	Wins	Losses	To play	Against $=g_{i j}$				
	w_{i}	I_{i}	g_{i}	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996
Which teams have a chance of finishing the season with most wins?

Detroit could finish season with $49+27=76$ wins.

Baseball Elimination: Explanation for Sports Writers

Team	Wins	Losses	To play	Against $=\mathrm{g}_{\mathrm{ij}}$				
	w_{i}	I_{i}	g_{i}	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996
Which teams could finish the season with most wins?
Detroit could finish season with $49+27=76$ wins.
Certificate of elimination. $\mathrm{R}=\{\mathrm{NY}, \mathrm{Bal}, \mathrm{Bos}$, Tor $\}$
Have already won $w(R)=278$ games.
Must win at least $r(R)=27$ more.
Average team in R wins at least 305/4>76 games.

Baseball Elimination: Explanation for Sports Writers

| Certificate of
 elimination |
| :--- |$\subseteq S, w(T):=\overbrace{i \in T}^{\# \text { wins }} w_{i}, g(T):=\overbrace{\sum_{\{x, y\} \subseteq T} g_{x y}}^{\text {\# remaining games }}$,

If $\overbrace{\frac{w(T)+g(T)}{|T|}}^{\text {LB on avg \# games won }}>w_{z}+g_{z}$ then z eliminated (by subset T).
Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T^{*} that eliminates z.

Proof idea. Let $T^{*}=$ teams on source side of min cut.

	w	\boldsymbol{l}	g	NY	Balt	Tor	Bos
NY	90		11		1	6	4
Baltimore	88		6	1	-	1	4
Toronto	87		10	6	1	-	4
Bøston	79		12	4	4	4	-

$$
\begin{gathered}
(90+87+6) / 2>91 \\
\text { so the set } T=\{N Y, \text { Tor }\} \\
\text { proves Boston is eliminated. }
\end{gathered}
$$

Fig 7.21 Min cut \Rightarrow no flow of value g^{*}, so Boston eliminated.

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.

Use max flow formulation, and consider min cut (A, B).
Define $T^{*}=$ team nodes on source side of min cut.
Observe $x-y \in A$ iff both $x \in T^{*}$ and $y \in T^{*}$.
infinite capacity edges ensure if $x-y \in A$ then $x \in A$ and $y \in A$
if $x \in A$ and $y \in A$ but $x-y \notin T^{*}$, then adding $x-y$ to A decreases capacity of cut

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define $T^{*}=$ team nodes on source side of min cut. Observe $x-y \in A$ iff both $x \in T^{*}$ and $y \in T^{*}$.

$$
g(S-\{z\})>\operatorname{cap}(A, B)
$$

$$
\begin{aligned}
& =\overbrace{g(S-\{z\})-g\left(T^{*}\right)}^{\text {capacity of game edges leaving A }}+\overbrace{\sum_{x \in T^{*}}\left(w_{z}+g_{z}-w_{x}\right)}^{\text {capacity of team edges leaving A }} \\
& =g(S-\{z\})-g\left(T^{*}\right)-w\left(T^{*}\right)+\left|T^{*}\right|\left(w_{z}+g_{z}\right)
\end{aligned}
$$

Rearranging:

$$
w_{z}+g_{z}<\frac{w\left(T^{*}\right)+g\left(T^{*}\right)}{\left|T^{*}\right|}
$$

Matching \& Baseball: Key Points

Can (sometimes) take problems that seemingly have nothing to do with flow \& reduce them to a flow problem
How? Build a clever network; map allocation of stuff in original problem (match edges; wins) to allocation of flow in network. Clever edge capacities constrain solution to mimic original problem in some way. Integrality useful.

Matching \& Baseball: Key Points

Furthermore, in the baseball example, min cut can be translated into a succinct certificate or proof of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than $g^{* "}$.
These examples suggest why max flow is so important - it's a very general tool used in many other algorithms.
Even more broadly - reduction is a powerful tool for algorithm design/analysis

Max Flow: Summary

- Important problem with a long history
- Properties and Tools:
» Duality: Max Flow - Min Cut Theorem
» Flow Integrality Theorem
» Residual graphs/augmenting paths
- Algorithms:
» Ford-Fulkerson ("method"); O(nmC) w/ rational caps
» Edmonds-Karp-Dinitz '70: shortest aug first, O(nm²)
- Many applications:
» Disjoint paths, bipartite matching, "baseball," ...
» "Reduction" as a key alg design technique

