Dynamic Programming:
Interval Scheduling and Knapsack
6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job \(j\) starts at \(s_j\), finishes at \(f_j\), and has weight or value \(v_j\).
- Two jobs *compatible* if they don't overlap.
- Goal: find *maximum weight* subset of mutually compatible jobs.

How?
- Divide & Conquer?
- Greedy?
Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Exercises: by “density” = weight per unit time? Other ideas?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

“\(p \)” suggesting (last possible) “predecessor”

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0 \).
Dynamic Programming: Binary Choice

Notation. $OPT(j) =$ value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- **Case 1:** Optimum **selects job** j.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j - 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $p(j)$

- **Case 2:** Optimum **does not select job** j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $j-1$

key idea: binary choice

principle of optimality

$$OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), \; OPT(j-1) \} & \text{otherwise}
\end{cases}$$
Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

Input: n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

```
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max($v_j + \text{Compute-Opt}(p(j))$, Compute-Opt(j-1))
}
```
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems ⇒ exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = p(2) = 0; \quad p(j) = j-2, \quad j \geq 3
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s₁,…,sₙ, f₁,…,fₙ, v₁,…,vₙ

Sort jobs by finish times so that f₁ ≤ f₂ ≤ ... ≤ fₙ.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 OPT[0] = 0
 for j = 1 to n
 OPT[j] = max(vⱼ + OPT[p(j)], OPT[j-1])
}

Output OPT[n]

Claim: OPT[j] is value of optimal solution for jobs 1..j

Timing: Easy. Main loop is O(n); sorting is O(n log n); what about p(j)?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Weighted Interval Scheduling Example

Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\(p(j) = \) largest \(i < j \) s.t. job \(i \) is compatible with \(j \).

Exercise: try other concrete examples:
If all \(v_j = 1 \): greedy by finish time \(\rightarrow 1, 4, 8 \)
what if \(v_2 > v_1 \), but \(< v_1 + v_4 \)?
\(v_2 > v_1 + v_4 \), but \(v_2 + v_6 < v_1 + v_7 \), say? etc.

Exercise: What values of \(v_8 \) cause it to be in/excluded from opt?

<table>
<thead>
<tr>
<th>(j)</th>
<th>(p_j)</th>
<th>(v_j)</th>
<th>(\max(v_j + \text{opt}[p_j], \text{opt}[j-1]) = \text{opt}[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>(\max(2+0, \ 0) = 2)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>(\max(3+0, \ 2) = 3)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>(\max(1+0, \ 3) = 3)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>(\max(6+2, \ 3) = 8)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>9</td>
<td>(\max(9+0, \ 8) = 9)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>(\max(7+3, \ 9) = 10)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>(\max(2+3, \ 10) = 10)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>?</td>
<td>(\max(?) + 9, \ 10) = ?)</td>
</tr>
</tbody>
</table>
Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing - “traceback”

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (v_j + OPT[p(j)] > OPT[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- # of recursive calls ≤ n ⇒ O(n).
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the 2^n possible subsets might be relevant).

Don’t believe me? Think about the analogous problem for weighted rectangles instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.
6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.
- Given \(n \) objects and a “knapsack.”
- Item \(i \) weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: maximize total value without overfilling knapsack

Ex: \(\{3, 4\} \) has value 40.

\[W = 11 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
<th>V/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
<td>3.60</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
<td>3.66</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \(\{5, 2, 1\} \) achieves only value = 35 \(\Rightarrow \) greedy not optimal.

[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]
Dynamic Programming: False Start

Def. $\text{OPT}(i) = \text{max profit subset of items } 1, \ldots, i.$

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$

- **Case 2:** OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. \(\text{OPT}(i, w) = \max \text{ profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

- **Case 1**: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using weight limit \(w \)

- **Case 2**: \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using this new weight limit

\[
\text{OPT}(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, w) & \text{if } w_i > w \\
\max \{ \text{OPT}(i-1, w), \ v_i + \text{OPT}(i-1, w-w_i) \} & \text{otherwise}
\end{cases}
\]
Knapsack Problem: Bottom-Up

\[\text{OPT}(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \]

Input: \(n, w_1, \ldots, w_N, v_1, \ldots, v_N \)

\[
\text{for } w = 0 \text{ to } W \\
\quad \text{OPT}[0, w] = 0
\]

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{for } w = 1 \text{ to } W \\
\quad \quad \text{if } (w_i > w) \\
\quad \quad \quad \text{OPT}[i, w] = \text{OPT}[i-1, w] \\
\quad \quad \text{else} \\
\quad \quad \quad \text{OPT}[i, w] = \text{max } \{\text{OPT}[i-1, w], v_i + \text{OPT}[i-1, w-w_i]\}
\]

Return \(\text{OPT}[n, W] \)

(Correctness: prove it by induction on \(i \) & \(w \).)
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(\text{OPT: \{4, 3\}} \)
value = 22 + 18 = 40

if \((w_i > w) \)
\(\text{OPT}[i, w] = \text{OPT}[i-1, w] \)
else
\(\text{OPT}[i, w] = \max\{\text{OPT}[i-1,w], v_i + \text{OPT}[i-1,w-w_i]\} \)
Knapsack Problem: Running Time

Running time. $\Theta(n W)$.
- **Not** polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution (i.e., satisfies weight-limit constraint) that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]