Dynamic Programming

Outline:

- General Principles
- Easy Examples – Fibonacci, Licking Stamps
- Meatier examples
 - Weighted interval scheduling
 - String Alignment
 - RNA Structure prediction
- Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

0 1 1 2 3 5 8 13 21 34 55 89 144 233 …

Recursive algorithm:

FiboR(n)

if n = 0 then return(0)
else if n = 1 then return(1)
else return(FiboR(n-1)+FiboR(n-2))

Note:

Exponential $\uparrow: F(n) \approx \Phi^n/\sqrt{5}$, $\Phi = (1+\sqrt{5})/2 \approx 1.618…$
Call tree - start

```
F (6)
  / \  \
F (5)  F (4)
  / \  \
F (4)  F (3)
  / \  /  \
F (2) F (2)  F (1)
  /  /  /  \
F (1) F (0) 1 0
```

many duplicates \Rightarrow exponential time!

$F(n) \approx \Phi^n / \sqrt{5}$
Two Alternative Fixes

Memoization ("Caching")
Compute on demand, but don’t re-compute:
- Save answers from all recursive calls
- Before a call, test whether answer saved

Dynamic Programming (not memoized)
Pre-compute, don’t re-compute:
- Recursion become iteration (top-down → bottom-up)
- Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs
Fibonacci - Memoized Version

initialize: $F[i] \leftarrow \text{undefined for all } i > 1$

$F[0] \leftarrow 0$

$F[1] \leftarrow 1$

FiboMemo(n):

\[
\text{if}(F[n] \text{ undefined}) \{ \\
\quad F[n] \leftarrow \text{FiboMemo}(n-2)+\text{FiboMemo}(n-1) \\
\}
\]

return($F[n]$)
Fibonacci - Dynamic Programming Version

FiboDP(n):
 F[0] ← 0
 F[1] ← 1
 for i = 2 to n do
 F[i] ← F[i-1]+F[i-2]
 end
 return(F[n])

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*

Parameters of these recursive calls *anticipated*

The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” – more below, e.g. slide 19
Example: Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination
Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
A Few Ways To Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

for a = 0, ..., N {
 for b = 0, ..., N {
 for c = 0, ..., N {
 if (5a+4b+c == N && a+b+c is new min)
 {retain (a,b,c);}{}
 }
 }
}

output retained triple;

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)}
Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are opt sol for \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
OPT(i) = \begin{cases}
0 & i=0 \\
1+OPT(i-1) & i\geq1 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-5) & i\geq5
\end{cases}
\]

Claim: \(OPT(i) = \) min number of stamps totaling \(i\phi \)

Pf: induction on \(i \).
New Idea: Recursion

\[OPT(i) = \min \left\{ \begin{array}{ll} 0 & i = 0 \\
1 + OPT(i-1) & i \geq 1 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-5) & i \geq 5
\end{array} \right. \]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

\[
\text{for } i = 0, \ldots, N \text{ do } \quad \text{OPT}(i) = \min \begin{cases}
0 & i=0 \\
1+\text{OPT}(i-1) & i \geq 1 \\
1+\text{OPT}(i-4) & i \geq 4 \\
1+\text{OPT}(i-5) & i \geq 5
\end{cases}
\]

Time: $O(N)$
Finding *How Many* Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT[i]</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

1 + Min(3, 1, 3) = 2
Finding Which Stamps: Trace-Back

\[
\text{OPT}[i] = 1 + \min(3, \text{OPT}[i-1], 3)
\]

\[
\text{OPT}(i) = \min\left\{\begin{array}{ll}
0 & i = 0 \\
1 + \text{OPT}(i-1) & i \geq 1 \\
1 + \text{OPT}(i-4) & i \geq 4 \\
1 + \text{OPT}(i-5) & i \geq 5
\end{array}\right.
\]

\[1 + \min(3, 1, 3) = 2\]
Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what's needed

TraceBack(i):
if i == 0 then return;
for d in {1, 4, 5} do
 if OPT[i] == 1 + OPT[i - d]
 then break;
print d;
TraceBack(i - d);

\[
OPT(i) = \min \begin{cases}
0 & i=0 \\
1+OPT(i-1) & i\geq1 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-5) & i\geq5
\end{cases}
\]
Complexity Note

O(N) is better than O(N³) or O(3^{N/5})

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – c•2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general (i.e., when denominations and total are both part of the input). See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways