CSE 421: Introduction to Algorithms

Stable Matching

Paul Beame
Matching Residents to Hospitals

- **Goal:** Given a set of preferences among hospitals and medical school residents (graduating medical students), design a *self-reinforcing* admissions process.

- **Unstable pair:** applicant x and hospital y are unstable if:
 - x prefers y to their assigned hospital.
 - y prefers x to one of its admitted residents.

- **Stable assignment.** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital side deal from being made.
Simpler: Stable Matching Problem

- **Goal.** Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

Men's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
<td>Zoran</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- **Perfect matching:** everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.

- **Stability:** no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair m-w is **unstable** if man m and woman w prefer each other to current partners.
 - Unstable pair m-w could each improve by eloping.

- **Stable matching:** perfect matching with no unstable pairs.

- **Stable matching problem.** Given the preference lists of n men and n women, find a stable matching if one exists.
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?

Men’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
<td>Zoran</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
</tr>
</tbody>
</table>
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?
A. No. Brenda and Xavier will hook up.

Men's Preference Profile

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- Q. Is assignment X-A, Y-B, Z-C stable?
- A. Yes.

Men's Preference Profile

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Brenda</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Amy</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Brenda</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Yuri</td>
</tr>
<tr>
<td>Claire</td>
<td>Xavier</td>
<td>Yuri</td>
</tr>
</tbody>
</table>
Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
- \(2n\) people; each person ranks others from 1 to \(2n-1\).
- Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>David</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Observation. Stable matchings do not always exist for stable roommate problem.
Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]
 Intuitive method that guarantees to find a stable matching.

Initialize each person to be free.

while (some man is free and hasn't proposed to every woman) {
 Choose such a man m
 \(w = \text{1}\text{st} \text{woman on m's list to whom m has not yet proposed} \)
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}
Proof of Correctness: Termination

- **Observation 1.** Men propose to women in decreasing order of preference.

- **Observation 2.** Once a woman is matched, she never becomes unmatched; she only "trades up."

- **Claim.** Algorithm terminates after at most n^2 iterations of while loop.

- **Proof.** Each time through the while loop a man proposes to a new woman. There are only n^2 possible proposals.

\[n(n-1) + 1 \] proposals required
Proof of Correctness: Perfection

Claim. All men and women get matched.

Proof. (by contradiction)
- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
- But, Zoran proposes to everyone, since he ends up unmatched. □
Proof of Correctness: Stability

- **Claim.** No unstable pairs.
- **Proof.** (by contradiction)
 - Suppose **A-Z** is an unstable pair: each prefers each other to partner in Gale-Shapley matching **S**.

 - **Case 1:** **Z** never proposed to **A**.
 - \(\Rightarrow\) **Z** prefers his GS partner to **A**.
 - \(\Rightarrow\) **A-Z** is stable.

 - **Case 2:** **Z** proposed to **A**.
 - \(\Rightarrow\) **A** rejected **Z** (right away or later)
 - \(\Rightarrow\) **A** prefers her GS partner to **Z**.
 - \(\Rightarrow\) **A-Z** is stable.

- In either case **A-Z** is stable, a contradiction. ▪
Summary

- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.

Q. How to implement GS algorithm efficiently?

Q. If there are multiple stable matchings, which one does GS find?
Implementation for Stable Matching Algorithms

- **Problem size**
 - \(N = 2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n^2 \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits

- **Brute force algorithm**
 - Try all \(n! \) possible matchings
 - Do any of them work?

- **Gale-Shapley Algorithm**
 - \(n^2 \) iterations, each costing constant time as follows:
Efficient Implementation

Efficient implementation. We describe $O(n^2)$ time implementation.

Representing men and women.
- Assume men are named $1, \ldots, n$.
- Assume women are named $1', \ldots, n'$.

Engagements.
- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays $wife[m]$, and $husband[w]$.
 - set entry to 0 if unmatched
 - if m matched to w then $wife[m]=w$ and $husband[w]=m$

Men proposing.
- For each man, maintain a list of women, ordered by preference.
- Maintain an array $count[m]$ that counts the number of proposals made by man m.

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create *inverse* of preference list of men.
- Constant time access for each query after $O(n)$ preprocessing per woman. $O(n^2)$ total reprocessing cost.

<table>
<thead>
<tr>
<th>Amy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pref</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse</td>
<td>4th</td>
<td>8th</td>
<td>2nd</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td>3rd</td>
<td>1st</td>
</tr>
</tbody>
</table>

for $i = 1$ to n

```
inverse[pref[i]] = i
```

Amy prefers man 3 to 6

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.
Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.

Man-optimal assignment. Each man receives best valid partner (according to his preferences).

Claim. All executions of GS yield a man-optimal assignment, which is a stable matching!

- No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
- Simultaneously best for each and every man.
Man Optimality

- **Claim.** GS matching S^* is man-optimal.
- **Proof.** (by contradiction)
 - Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference \Rightarrow some man is rejected by a valid partner.
 - Let Y be the man who is the *first* such rejection, and let A be the women who is *first* valid partner that rejects him.
 - Let S be a stable matching where A and Y are matched.
 - In building S^*, when Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
 - Let B be Z's partner in S.
 - In building S^*, Z is not rejected by any valid partner at the point when Y is rejected by A.
 - Thus, Z prefers A to B.
 - But A prefers Z to Y.
 - Thus $A-Z$ is unstable in S. \blacksquare

since this is the *first* rejection by a valid partner
Stable Matching Summary

- **Stable matching problem.** Given preference profiles of n men and n women, find a stable matching.

 - no man and woman prefer to be with each other than with their assigned partner

- **Gale-Shapley algorithm.** Finds a stable matching in $O(n^2)$ time.

- **Man-optimality.** In version of GS where men propose, each man receives best valid partner.

 - w is a valid partner of m if there exist some stable matching where m and w are paired

- **Q.** Does man-optimality come at the expense of the women?
Woman Pessimality

- Woman-pessimal assignment. Each woman receives worst valid partner.

- Claim. GS finds woman-pessimal stable matching S^*.

- Proof.
 - Suppose $A-Z$ matched in S^*, but Z is not worst valid partner for A.
 - There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
 - Let B be Z's partner in S.
 - Z prefers A to B. ← man-optimality of S^*
 - Thus, $A-Z$ is an unstable in S. □

...
Extensions: Matching Residents to Hospitals

- **Ex:** Men ≈ hospitals, Women ≈ med school residents.

- **Variant 1.** Some participants declare others as unacceptable.

- **Variant 2.** Unequal number of men and women.

- **Variant 3.** Limited polygamy.

- **Def.** Matching S is **unstable** if there is a hospital h and resident r such that:
 - h and r are acceptable to each other; and
 - either r is unmatched, or r prefers h to her assigned hospital; and
 - either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

- E.g. resident A unwilling to work in Cleveland
- E.g. hospital X wants to hire 3 residents
Application: Matching Residents to Hospitals

- **NRMP.** *(National Resident Matching Program)*
 - Original use just after WWII.
 - Ides of March, 23,000+ residents.

- Rural hospital dilemma.
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - Rural hospitals were under-subscribed in NRMP matching.
 - How can we find stable matching that benefits "rural hospitals"?

- **Rural Hospital Theorem.** Rural hospitals get exactly same residents in every stable matching!

- **Note:** Pre-1995 NRMP favored hospitals (they proposed). Changed in 1995 to favor residents.
Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.

- Potentially deep social ramifications.

[legal disclaimer]
Q. Can there be an incentive to misrepresent your preference profile?
- Assume you know men’s propose-and-reject algorithm will be run.
- Assume that you know the preference profiles of all other participants.

Fact. No, for any man. Yes, for some women. No mechanism can guarantee a stable matching and be cheatproof.

<table>
<thead>
<tr>
<th>Xavier</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yuri</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zoran</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Claire</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brenda</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
</tbody>
</table>

Amy Lies