CSE 421: Introduction to Algorithms

Graph Traversal

Paul Beame

Undirected Graph $\quad G=(V, E)$

Directed Graph G = (V,E)

Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex s to find all vertices reachable from s

Generic Graph Traversal Algorithm

Find: set \mathbf{R} of vertices reachable from $\mathbf{s} \in \mathbf{V}$

Reachable(s):
$\mathbf{R} \leftarrow\{\mathbf{s}\}$
While there is a $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ where $\mathbf{u} \in \mathbf{R}$ and $\mathbf{v} \notin \mathbf{R}$ Add \mathbf{v} to \mathbf{R}
Return \mathbf{R}

Generic Traversal Always Works

- Claim: At termination \mathbf{R} is the set of nodes reachable from s
- Proof
- \subseteq : For every node $\mathbf{v} \in \mathbf{R}$ there is a path from \mathbf{s} to \mathbf{v}
- \supseteq : Suppose there is a node $\mathbf{w} \notin \mathbf{R}$ reachable from \mathbf{s} via a path P
- Take first node \mathbf{v} on \mathbf{P} such that $\mathbf{v} \notin \mathbf{R}$
- Predecessor \mathbf{u} of \mathbf{v} in \mathbf{P} satisfies
- $\mathbf{u} \in \mathbf{R}$
- $(\mathbf{u}, \mathrm{v}) \in \mathrm{E}$
- But this contradicts the fact that the algorithm exited the while loop.

Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex sto find all vertices reachable from s
- Three states of vertices
- unvisited
- visited/discovered (in R)
- fully-explored (in R and all neighbors in R)

Breadth-First Search

- Completely explore the vertices in order of their distance from s
- Naturally implemented using a queue

BFS(s)

Global initialization: mark all vertices "unvisited"

BFS(s)

mark s "visited"; $\mathbf{R} \leftarrow\{\mathbf{s}\}$; layer $\mathbf{L}_{\mathbf{0}} \leftarrow\{\mathbf{s}\}$
while $\mathbf{L}_{\mathbf{i}}$ not empty
$\mathrm{L}_{\mathrm{i}+1} \leftarrow \varnothing$
For each $\mathbf{u} \in \mathbf{L}_{\mathbf{i}}$
for each edge $\{\mathbf{u}, \mathbf{v}\}$
if (\mathbf{v} is "unvisited")
mark v "visited"
Add \mathbf{v} to set \mathbf{R} and to layer $\mathbf{L}_{\mathbf{i}+1}$
mark u "fully-explored"
$\mathbf{i} \leftarrow \mathbf{i}+\mathbf{1}$

Properties of BFS(v)

- BFS(s) visits x if and only if there is a path in G from s to X .
- Edges followed to undiscovered vertices define a "breadth first spanning tree" of G
- Layer i in this tree, L_{i}
- those vertices u such that the shortest path in \mathbf{G} from the root \mathbf{s} is of length i .
- On undirected graphs
- All non-tree edges join vertices on the same or adjacent layers

Properties of BFS

- On undirected graphs
- All non-tree edges join vertices on the same or adjacent layers
- Suppose not
- Then there would be vertices (\mathbf{x}, \mathbf{y}) such that $x \in L_{i}$ and $y \in L_{j}$ and $j>i+1$
- Then, when vertices incident to \mathbf{x} are considered in BFS y would be added to $\mathrm{L}_{\mathrm{i}+1}$ and not to L_{j}

BFS Application: Shortest Paths

Graph Search Application: Connected Components

- Want to answer questions of the form:
- Given: vertices u and vin G
- Is there a path from \mathbf{u} to v ?
- Idea: create array A such that

$$
\mathrm{A}[\mathbf{u}]=\text { smallest numbered vertex }
$$

Q: Why not create an array
Path[u,v]? that is connected to u

- question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathbf{v}]$?

Graph Search Application: Connected Components

- initial state: all v unvisited for $\mathbf{s} \leftarrow \mathbf{1}$ to n do
if state $(\mathbf{s}) \neq$ "fully-explored" then
BFS(s): setting $\mathbf{A}[\mathbf{u}] \leftarrow \mathbf{s}$ for each \mathbf{u} found (and marking u visited/fully-explored) endif endfor
- Total cost: $\mathbf{O}(\mathbf{n}+\mathbf{m})$
- each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
- works also with Depth First Search

DFS(u) - Recursive version

Global Initialization: mark all vertices "unvisited" DFS(\mathbf{u})
mark u "visited" and add \mathbf{u} to \mathbf{R}
for each edge $\{\mathbf{u}, \mathbf{v}\}$
if (\mathbf{v} is "unvisited")
DFS(v)
end for
mark u "fully-explored"

Properties of DFS(s)

- Like BFS(s):
- DFS(s) visits x if and only if there is a path in G from s to x
- Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
- the DFS spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels
- BUT...

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges.

No cross edges in DFS on undirected graphs

- Claim: During DFS(x) every vertex marked visited is a descendant of \mathbf{x} in the DFS tree \mathbf{T}
- Claim: For every \mathbf{x}, \mathbf{y} in the DFS tree \mathbf{T}, if (\mathbf{x}, \mathbf{y}) is an edge not in \mathbf{T} then one of \mathbf{x} or \mathbf{y} is an ancestor of the other in T
- Proof:
- One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)
- During DFS(x), the edge (x, y) is examined
- Since (x, y) is a not an edge of T, y was visited when the edge (\mathbf{x}, y) was examined during DFS(\mathbf{x})
- Therefore \mathbf{y} was visited during the call to DFS(\mathbf{x}) so y is a descendant of \mathbf{x}.

Applications of Graph Traversal: Bipartiteness Testing

- Easy: A graph G is not bipartite if it contains an odd length cycle
- WLOG: G is connected
- Otherwise run on each component
- Simple idea: start coloring nodes starting at a given node s
- Color s red
- Color all neighbors of s blue
- Color all their neighbors red
- If you ever hit a node that was already colored
- the same color as you want to color it, ignore it
- the opposite color, output error

BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_{i} the color i mod 2
- i.e. red if they are in an even layer, blue if in an odd layer
- If there is an edge joining two vertices from the same layer then output "Not Bipartite"

Why does it work?

DFS(v) for a directed graph

DFS(v)

Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Directed Acyclic Graphs

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG

Topological Sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices
- Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Directed Acyclic Graph

In-degree 0 vertices

- Every DAG has a vertex of in-degree 0
- Proof: By contradiction
- Suppose every vertex has some incoming edge
- Consider following procedure: while (true) do
$\mathbf{v} \leftarrow$ some predecessor of \mathbf{v}
- After $\mathbf{n + 1}$ steps where $\mathbf{n}=|\mathbf{V}|$ there will be a repeated vertex
- This yields a cycle, contradicting that it is a DAG

Topological Sort

- Can do using DFS
- Alternative simpler idea:
- Any vertex of in-degree 0 can be given number 1 to start
- Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.

Topological Sort

Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex $\mathbf{O}(\mathbf{m}+\mathbf{n})$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost $\mathbf{O}(\mathbf{m}+\mathbf{n})$

