CSE 421: Introduction to Algorithms

Graph Traversal

Paul Beame
Undirected Graph $G = (V, E)$
Directed Graph $G = (V,E)$
Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex s to find all vertices reachable from s
Generic Graph Traversal Algorithm

Find: set R of vertices reachable from $s \in V$

Reachable(s):

$R \leftarrow \{s\}$

While there is a $(u, v) \in E$ where $u \in R$ and $v \notin R$

Add v to R

Return R
Generic Traversal Always Works

- **Claim:** At termination R is the set of nodes reachable from s
- **Proof**
 - \subseteq: For every node $v \in R$ there is a path from s to v
 - \supseteq: Suppose there is a node $w \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies
 - $u \in R$
 - $(u,v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop.
Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex \(s \) to find all vertices reachable from \(s \)

- Three states of vertices
 - unvisited
 - visited/discovered (in \(R \))
 - fully-explored (in \(R \) and all neighbors in \(R \))
Breadth-First Search

- Completely explore the vertices in order of their distance from s

- Naturally implemented using a queue
BFS(s)

Global initialization: mark all vertices “unvisited”

BFS(s)
 mark s “visited”; R←{s}; layer L₀←{s}
 while Lᵢ not empty
 Lᵢ⁺¹ ← Ø
 For each u∈Lᵢ
 for each edge {u,v}
 if (v is “unvisited”)
 mark v “visited”
 Add v to set R and to layer Lᵢ⁺¹
 mark u “fully-explored”
 i ← i+1
Properties of BFS\((v) \)

- \(\text{BFS}(s) \) visits \(x \) if and only if there is a path in \(G \) from \(s \) to \(x \).

- Edges followed to undiscovered vertices define a “breadth first spanning tree" of \(G \)

- Layer \(i \) in this tree, \(L_i \)
 - those vertices \(u \) such that the shortest path in \(G \) from the root \(s \) is of length \(i \).

- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers
Properties of BFS

- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers

- Suppose not
 - Then there would be vertices \((x,y)\) such that \(x \in L_i\) and \(y \in L_j\) and \(j > i+1\)
 - Then, when vertices incident to \(x\) are considered in BFS \(y\) would be added to \(L_{i+1}\) and not to \(L_j\)
BFS Application: Shortest Paths

Tree gives shortest paths from start vertex

can label by distances from start vertex
Graph Search Application: Connected Components

- Want to answer questions of the form:
 - Given: vertices \(u \) and \(v \) in \(G \)
 - Is there a path from \(u \) to \(v \)?

- Idea: create array \(A \) such that
 \[A[u] = \text{smallest numbered vertex that is connected to } u \]

Q: Why not create an array \(\text{Path}[u,v] \)?
Graph Search Application: Connected Components

- initial state: all \(v \) unvisited
 for \(s \leftarrow 1 \) to \(n \) do
 if \(\text{state}(s) \neq \"fully-explored\" \) then
 BFS\((s)\): setting \(A[u] \leftarrow s \) for each \(u \) found
 (and marking \(u \) visited/fully-explored)
 endif
 endfor

- Total cost: \(O(n+m) \)
 - each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
 - works also with Depth First Search
DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS(u)

 mark u “visited” and add u to R

 for each edge {u,v}
 if (v is “unvisited”)
 DFS(v)
 end for

mark u “fully-explored”
Properties of DFS(s)

- Like BFS(s):
 - DFS(s) visits x if and only if there is a path in G from s to x
 - Edges into undiscovered vertices define a "depth first spanning tree" of G

- Unlike the BFS tree:
 - the DFS spanning tree isn't minimum depth
 - its levels don't reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels

- BUT…
Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- No cross edges.
No cross edges in DFS on undirected graphs

- **Claim:** During **DFS(x)** every vertex marked visited is a descendant of *x* in the DFS tree **T**

- **Claim:** For every *x*,*y* in the DFS tree **T**, if (x,y) is an edge not in **T** then one of *x* or *y* is an ancestor of the other in **T**

- **Proof:**
 - One of *x* or *y* is visited first, suppose WLOG that *x* is visited first and therefore **DFS(x)** was called before **DFS(y)**
 - During **DFS(x)**, the edge (x,y) is examined
 - Since (x,y) is a not an edge of **T**, *y* was visited when the edge (x,y) was examined during **DFS(x)**
 - Therefore *y* was visited during the call to **DFS(x)** so *y* is a descendant of *x*.
Applications of Graph Traversal: Bipartiteness Testing

- **Easy**: A graph G is not bipartite if it contains an odd length cycle.
- **WLOG**: G is connected.
 - Otherwise run on each component.
- **Simple idea**: start coloring nodes starting at a given node s.
 - Color s red.
 - Color all neighbors of s blue.
 - Color all their neighbors red.
 - If you ever hit a node that was already colored the same color as you want to color it, ignore it.
 - If you ever hit a node that was already colored the opposite color, output error.
BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_i the color $i \mod 2$
 - i.e. red if they are in an even layer, blue if in an odd layer

- If there is an edge joining two vertices from the same layer then output “Not Bipartite”
Why does it work?

u and v have a common ancestor

Cycle length $2(j-i)+1$
DFS(v) for a directed graph
DFS(v)
Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s

- Every cycle contains a back edge in the DFS tree
Directed Acyclic Graphs

- A directed graph $G=(V,E)$ is acyclic if it has no directed cycles.

- **Terminology:** A directed acyclic graph is also called a DAG.
Topological Sort

- **Given:** a directed acyclic graph (DAG) $G=(V,E)$
- **Output:** numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices

Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them
Directed Acyclic Graph
In-degree 0 vertices

- Every DAG has a vertex of in-degree 0
- **Proof:** By contradiction
 - Suppose every vertex has some incoming edge
 - Consider following procedure:

    ```
    while (true) do
        v ← some predecessor of v
    ```
 - After **n+1** steps where **n=|V|** there will be a repeated vertex
 - This yields a cycle, contradicting that it is a DAG
Topological Sort

- Can do using DFS

- Alternative simpler idea:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
Topological Sort
Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex \(O(m+n) \)
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost \(O(m+n) \)