CSE 421: Introduction to Algorithms

Divide and Conquer

Paul Beame

Algorithm Design Techniques

- Divide \& Conquer
- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
- e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Fast exponentiation

- Power(a,n)
- Input: integer n and number a
- Output: a^{n}
- Obvious algorithm
- n-1 multiplications
- Observation:
- if n is even, $\mathrm{n}=2 \mathrm{~m}$, then $\mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}} \cdot \mathrm{a}^{\mathrm{m}}$

Divide \& Conquer Algorithm

- $\operatorname{Power}(\mathbf{a}, \mathbf{n})$
if $\mathbf{n}=\mathbf{0}$ then return(1)
else if $\mathbf{n}=\mathbf{1}$ then return(\mathbf{a}) else

$$
\begin{aligned}
& \mathbf{x} \leftarrow \text { Power }(\mathbf{a},\lfloor\mathbf{n} / \mathbf{2}\rfloor) \\
& \text { if } \mathbf{n} \text { is even then } \\
& \quad \text { return }(\mathbf{x} \cdot \mathbf{x}) \\
& \text { else } \quad \\
& \\
& \quad \text { return }(\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{x})
\end{aligned}
$$

Analysis

- Worst-case recurrence
- $\mathbf{T}(\mathrm{n})=\mathrm{T}(\lfloor\mathrm{n} / 2 \mathrm{~J})+2$ for $\mathrm{n} \geq 1$
- $T(1)=0$
- Time
- $T(n)=T(n / 2\rfloor)+2 \leq T(n / 4\rfloor)+2+2 \leq \ldots$

$$
\leq \mathrm{T}(1)+\underbrace{2+\ldots+2}_{\log _{2} \mathrm{n} \text { copies }}=2 \log _{2} n
$$

- More precise analysis:
- $\mathbf{T}(\mathbf{n})=\left\lceil\log _{2} \mathbf{n}\right\rceil+\#$ of 1 's in n's binary representation

A Practical Application- RSA

- Instead of a^{n} want $a^{n} \bmod N$
- $\mathbf{a}^{\mathbf{i}+\boldsymbol{j}} \bmod \mathbf{N}=\left(\left(\mathbf{a}^{\boldsymbol{i}} \bmod \mathbf{N}\right) \cdot\left(\mathbf{a}^{\boldsymbol{j}} \bmod \mathbf{N}\right)\right) \bmod \mathbf{N}$
- same algorithm applies with each $x \cdot y$ replaced by - ($(\mathbf{x} \bmod \mathbf{N}) \cdot(\mathbf{y} \bmod \mathbf{N})) \bmod \mathbf{N}$
- In RSA cryptosystem (widely used for security)
- need a^{n} mod \mathbf{N} where $\mathbf{a}, \mathbf{n}, \mathbf{N}$ each typically have 1024 bits
- Power: at most 2048 multiplies of 1024 bit numbers
- relatively easy for modern machines
- Naive algorithm: 2^{1024} multiplies

Binary search for roots (bisection method)

- Given:
- continuous function f and two points $\mathbf{a}<\mathbf{b}$ with $\mathrm{f}(\mathrm{a}) \leq 0$ and $\mathrm{f}(\mathrm{b})>0$
- Find:
- approximation to c s.t. $\mathbf{f}(\mathbf{c})=0$ and $\mathbf{a}<\mathbf{c}<\mathbf{b}$

Bisection method

Bisection($\mathbf{a}, \mathbf{b}, \varepsilon$)
if $(\mathbf{a}-\mathbf{b})<\varepsilon$ then
return(a)
else
$c \leftarrow(a+b) / 2$
if $\mathbf{f}(\mathbf{c}) \leq \mathbf{0}$ then return(Bisection($\mathbf{c}, \mathbf{b}, \varepsilon$))
else
return(Bisection($\mathbf{a}, \mathbf{c}, \varepsilon)$)

Time Analysis

- At each step we halved the size of the interval
- It started at size b-a
- It ended at size ε
- \# of calls to f is $\left.\log _{2}(\mathbf{(b - a}) / \varepsilon\right)$

Old favorites

- Binary search
- One subproblem of half size plus one comparison
- Recurrence $T(n)=T(\lceil n / 2\rceil)+1$ for $n \geq 2$

$$
\mathbf{T}(1)=0
$$

So $T(n)$ is $\left\lceil\log _{2} n\right\rceil+1$

- Mergesort
- Two subproblems of half size plus merge cost of n -1 comparisons
- Recurrence $T(n) \leq \mathbf{2 T}(\lceil n / 2\rceil)+n-1$ for $n \geq 2$

$$
T(1)=0
$$

Roughly \mathbf{n} comparisons at each of $\log _{2} \mathbf{n}$ levels of recursion
So $T(n)$ is roughly $2 n \log _{2} n$

Euclidean Closest Pair

- Given a set \mathbf{P} of \mathbf{n} points p_{1}, \ldots, p_{n} with real-valued coordinates
- Find the pair of points $p_{i}, p_{i} \in P$ such that the Euclidean distance $\mathbf{d}\left(\mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}\right)$ is minimized
- $\Theta\left(\mathbf{n}^{2}\right)$ possible pairs
- In one dimension: easy $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ algorithm
- Sort the points
- Compare consecutive elements in the sorted list
- What about points in the plane?

Closest Pair in the Plane

No single direction along which one can sort points to guarantee success!

Closest Pair In the Plane: Divide and Conquer

- Sort the points by their \mathbf{x} coordinates
- Split the points into two sets of $\mathbf{n} / 2$ points L and \mathbf{R} by x coordinate
- Recursively compute
- closest pair of points in $\mathbf{L},\left(\mathbf{p}_{\mathrm{L}}, \mathbf{q}_{\mathrm{L}}\right)$
- closest pair of points in $\mathbf{R},\left(\boldsymbol{p}_{\mathrm{R}}, \mathbf{q}_{\mathrm{R}}\right)$
- Let $\delta=\min \left\{\mathbf{d}\left(\mathbf{p}_{\mathrm{L}}, \mathbf{q}_{\mathrm{L}}\right), \mathbf{d}\left(\mathbf{p}_{\mathbf{R}}, \mathbf{q}_{\mathrm{R}}\right)\right\}$ and let (\mathbf{p}, \mathbf{q}) be the pair of points that has distance δ
- But this may not be enough
- Closest pair of points may involve one point from L and the other from \mathbf{R} !

A clever geometric idea

R

Any pair of points $p \in L$ and $q \in R$ with $d(p, q)<\delta$ must
lie in band

A clever geometric idea

A clever geometric idea

L

Closest Pair Recombining

- Sort points by y coordinate ahead of time
- On recombination only compare each point in δ-band of $\mathbf{L} \cup \boldsymbol{R}$ to the $\mathbf{1 1}$ points in δ-band of $\mathbf{L} \cup \boldsymbol{R}$ above it in the y sorted order
- If any of those distances is better than δ replace (\mathbf{p}, \mathbf{q}) by the best of those pairs
- $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ for x and y sorting at start
- Two recursive calls on problems on half size
- O(n) recombination
- Total O(n $\log \mathrm{n})$

Sometimes two sub-problems aren't enough

- More general divide and conquer
- You've broken the problem into a different sub-problems
- Each has size at most n/b
- The cost of the break-up and recombining the sub-problem solutions is $\mathbf{O}\left(\mathbf{n}^{k}\right)$
- Recurrence
- $T(n) \leq \mathbf{a} \cdot T(n / b)+c \cdot n^{k}$

Master Divide and Conquer Recurrence

- If $\mathbf{T}(\mathbf{n}) \leq \mathbf{a} \cdot \mathbf{T}(\mathrm{n} / \mathrm{b})+\mathbf{c} \cdot \mathrm{n}^{k}$ for $\mathrm{n}>\mathrm{b}$ then
- if $\mathbf{a}>\boldsymbol{b}^{k}$ then $\mathbf{T}(\mathbf{n})$ is $\Theta\left(n^{\log _{b} a}\right)$
- if $\mathbf{a}<\mathbf{b}^{\mathbf{k}}$ then $\mathbf{T}(\mathbf{n})$ is $\Theta\left(\mathrm{n}^{\mathrm{k}}\right)$
- if $\mathbf{a}=\mathbf{b}^{k}$ then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{\mathrm{k}} \log \mathrm{n}\right)$
- Works even if it is $\lceil n / b\rceil$ instead of n / b.

Proving Master recurrence

Problem size $\quad \mathbf{T}(\mathbf{n})=\mathbf{a} \cdot \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{c} \cdot \mathbf{n}^{\mathrm{k}}$ \# probs n
n/b
n / b^{2}
b

$T(1)=c$

Proving Master recurrence

Problem size $\quad \mathbf{T}(\mathbf{n})=\mathbf{a} \cdot \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{c} \cdot \mathbf{n}^{\mathbf{k}}$ \# probs n
n / b
b

1

Proving Master recurrence

Problem size

cost cn ${ }^{k}$
$c \cdot a \cdot n^{k} / b^{k}$
$\mathrm{c} \cdot \mathrm{a}^{2} \cdot \mathrm{n}^{\mathrm{k}} / \mathrm{b}^{2 \mathrm{k}}$ $=c \cdot n^{k}\left(a / b^{k}\right)^{2}$
c. $\cdot n^{k}\left(a / b^{k}\right)^{d}$
$=c \cdot a^{d}$

Geometric Series

- $\mathrm{S}=\mathrm{t}+\mathrm{tr}+\mathrm{tr}^{2}+\ldots+\mathrm{tr}^{\mathrm{n}-1}$
$\square \mathbf{r} \cdot \mathrm{S}=\quad \mathrm{tr}+$ tr $^{2}+\ldots+$ tr $^{\mathrm{n}-1}+$ tr $^{\mathrm{n}}$
- $(r-1) S=t r^{n}-t$
- so $S=t\left(r^{n}-1\right) /(r-1)$ if $r \neq 1$.
- Simple rule
- If $r \neq 1$ then S is a constant times largest term in series

Total Cost

- Geometric series

- ratio a/bk
- $\mathrm{d}+1=\log _{\mathrm{b}} \mathrm{n}+1$ terms
- first term cn ${ }^{\mathrm{k}}$, last term $\mathbf{c a}^{\text {d }}$
- If $a / b^{k}=1$
- all terms are equal $T(n)$ is $\Theta\left(n^{k} \log n\right)$
- If $a / b^{k}<1$
- first term is largest $T(n)$ is $\Theta\left(n^{k}\right)$
- If $a / b^{k}>1$
- last term is largest $T(n)$ is $\Theta\left(a^{d}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$ (To see this take $\log _{b}$ of both sides)

Multiplying Matrices

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
a_{1} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} & \circ & a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}+a_{24} b_{41} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} & \circ & a_{21} b_{14}+a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}+a_{34} b_{41} & a_{31} b_{12}+a_{33} b_{22}+a_{33} b_{32}+a_{34} b_{42} & \circ & a_{31} b_{14}+a_{32} b_{24}+a_{33} b_{34}+a_{34} b_{44} \\
a_{41} b_{11}+a_{42} b_{21}+a_{43} b_{31}+a_{44} b_{41} & a_{41} b_{12}+a_{42} b_{22}+a_{43} b_{32}+a_{44} b_{42} & \circ & a_{44} b_{14}+a_{42} b_{24}+a_{43} b_{34}+a_{44} b_{44}
\end{array}\right]
\end{aligned}
$$

- n^{3} multiplications, $\mathrm{n}^{3}-\mathrm{n}^{2}$ additions

Multiplying Matrices

for $\mathbf{i}=\mathbf{1}$ to \mathbf{n}

$$
\text { for } \mathbf{j}=\mathbf{1} \text { to } \mathbf{n}
$$

$$
\mathrm{C}[i, j] \leftarrow 0
$$

$$
\text { for } \mathbf{k}=\mathbf{1} \text { to } \mathbf{n}
$$

$$
\mathbf{C}[i, j]=\mathbf{C}[i, j]+\mathbf{A}[\mathbf{i}, \mathbf{k}] \cdot \mathrm{B}[\mathbf{k}, \mathrm{j}]
$$

endfor
endfor
endfor

Multiplying Matrices

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22}
\end{array}\right.} \\
& a_{23}
\end{aligned} a_{24} .\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \bullet\left[\begin{array}{llll}
\\
b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right] .
$$

Multiplying Matrices

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{14} \\
a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{34} \\
a_{42} & a_{43} & a_{44}
\end{array}\right] \bullet\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} & \circ & a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}+a_{24} b_{41} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} & \circ & a_{21} b_{14}+a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}+a_{34} b_{41} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42} & \circ & a_{31} b_{14}+a_{32} b_{24}+a_{33} b_{34}+a_{34} b_{44} \\
a_{41} b_{11}+a_{42} b_{21}+a_{43} b_{31}+a_{44} b_{41} & a_{41} b_{12}+a_{42} b_{22}+a_{43} b_{32}+a_{44} b_{42} & \circ & a_{41} b_{14}+a_{42} b_{24}+a_{43} b_{34}+a_{44} b_{44}
\end{array}\right]
\end{aligned}
$$

Multiplying Matrices

Simple Divide and Conquer

$$
\begin{aligned}
& \left(\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{l|l}
B_{11} & B_{12} \\
\hline B_{21} & B_{22}
\end{array}\right] \\
& =\left(\begin{array}{ll|}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
\hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right) \\
& =T(n)=8 T(n / 2)+4(n / 2)^{2}=8 T(n / 2)+n^{2} \\
& =8>2^{2} \text { so } T(n) \text { is }
\end{aligned}
$$

$$
\Theta\left(n^{\log _{b} \mathrm{a}}\right)=\Theta\left(\mathrm{n}^{\log _{2} 8}\right)=\Theta\left(\mathrm{n}^{3}\right)
$$

Strassen's Divide and Conquer Algorithm

- Strassen's algorithm
- Multiply 2×2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)
- $T(n)=7 T(n / 2)+c n^{2}$
$.7>2^{2}$ so $T(n)$ is $\Theta\left(n^{\log _{2} 7}\right)$ which is $O\left(n^{2.81 \ldots}\right)$
- Fastest algorithms theoretically use $\mathbf{O}\left(\mathrm{n}^{2.376}\right)$ time
- not practical but Strassen's is practical provided calculations are exact and we stop recursion when matrix has size somewhere between 10 and 100

The algorithm

$$
\begin{aligned}
& \mathbf{P}_{1} \leftarrow \mathbf{A}_{12}\left(\mathbf{B}_{11}+\mathbf{B}_{21}\right) ; \quad \mathbf{P}_{2} \leftarrow \mathbf{A}_{21}\left(\mathbf{B}_{12}+\mathbf{B}_{22}\right) \\
& \mathbf{P}_{3} \leftarrow\left(\mathbf{A}_{11}-\mathbf{A}_{12}\right) \mathbf{B}_{11} ; \quad \mathbf{P}_{4} \leftarrow\left(\mathbf{A}_{22}-\mathbf{A}_{21}\right) \mathbf{B}_{22} \\
& \mathbf{P}_{5} \leftarrow\left(\mathbf{A}_{22}-\mathbf{A}_{12}\right)\left(\mathbf{B}_{21}-\mathbf{B}_{22}\right) \\
& \mathbf{P}_{6} \leftarrow\left(\mathbf{A}_{11}-\mathbf{A}_{21}\right)\left(\mathbf{B}_{12}-\mathbf{B}_{11}\right) \\
& \mathbf{P}_{7} \leftarrow\left(\mathbf{A}_{21}-\mathbf{A}_{12}\right)\left(\mathbf{B}_{11}+\mathbf{B}_{22}\right) \\
& \mathbf{C}_{11} \leftarrow \mathbf{P}_{1}+\mathbf{P}_{3} ; \quad \mathbf{C}_{12} \leftarrow \mathbf{P}_{2}+\mathbf{P}_{3}+\mathbf{P}_{6}-\mathbf{P}_{7} \\
& \mathbf{C}_{21} \leftarrow \mathbf{P}_{1}+\mathbf{P}_{4}+\mathbf{P}_{5}+\mathbf{P}_{7} ; \mathbf{C}_{22} \leftarrow \mathbf{P}_{2}+\mathbf{P}_{4}
\end{aligned}
$$

Another Divide \&Conquer Example: Multiplying Faster

- If you analyze our usual grade school algorithm for multiplying numbers
- $\Theta\left(\mathbf{n}^{2}\right)$ time
- On real machines each "digit" is, e.g., 32 bits long but still get $\Theta\left(n^{2}\right)$ running time with this algorithm when run on n -bit multiplication
- We can do better!
- We'll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials

- These are just formal sequences of coefficients
- when we show something multiplied by $\mathbf{x}^{\mathbf{k}}$ it just means shifted k places to the left - basically no work

Usual polynomial multiplication

$$
\begin{array}{r}
4 x^{2}+2 x+2 \\
x^{2}-3 x+1 \\
4 x^{2}+2 x+2 \\
-12 x^{3}-6 x^{2}-6 x \\
4 x^{4}+2 x^{3}+2 x^{2} \\
\hline 4 x^{4}-10 x^{3}+0 x^{2}-4 x+2
\end{array}
$$

Polynomial Multiplication

- Given:
- Degree $\mathrm{n}-1$ polynomials \mathbf{P} and \mathbf{Q}
- $P=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}+a_{n-1} x^{n-1}$
- $Q=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-2} x^{n-2}+b_{n-1} x^{n-1}$
- Compute:
- Degree 2n-2 Polynomial P Q
- $P Q=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}$

$$
+\ldots+\left(a_{n-2} b_{n-1}+a_{n-1} b_{n-2}\right) x^{2 n-3}+a_{n-1} b_{n-1} x^{2 n-2}
$$

- Obvious Algorithm:
- Compute all $\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}}$ and collect terms
- $\Theta\left(n^{2}\right)$ time

Naive Divide and Conquer

- Assume $n=2 k$
- $P=\left(a_{0}+a_{1} \quad x+a_{2} x^{2}+\ldots+a_{k-2} x^{k-2}+a_{k-1} x^{k-1}\right)+$ $\left(a_{k}+a_{k+1} x+\quad \ldots+a_{n-2} x^{k-2}+a_{n-1} x^{k-1}\right) x^{k}$
$=P_{0}+P_{1} x^{k}$ where P_{0} and P_{1} are degree $k-1$ polynomials
- Similarly $Q=Q_{0}+Q_{1} x^{k}$
- $P Q=\left(P_{0}+P_{1} x^{k}\right)\left(Q_{0}+Q_{1} x^{k}\right)$
$=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) x^{k}+P_{1} Q_{1} x^{2 k}$
- 4 sub-problems of size $k=n / 2$ plus linear combining
- $T(n)=4 \cdot T(n / 2)+c n \quad$ Solution $T(n)=\Theta\left(n^{2}\right)$

Karatsuba's Algorithm

- A better way to compute the terms
- Compute
- $A \leftarrow P_{0} Q_{0}$
- $B \leftarrow P_{1} Q_{1}$
- $C \leftarrow\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)=P_{0} Q_{0}+P_{1} Q_{0}+P_{0} Q_{1}+P_{1} Q_{1}$
- Then
- $P_{0} Q_{1}+P_{1} Q_{0}=C-A-B$
- So $P Q=A+(C-A-B) x^{k}+B x^{2 k}$
- 3 sub-problems of size $\mathrm{n} / 2$ plus $\mathbf{O}(\mathrm{n})$ work
- $\mathbf{T}(\mathbf{n})=3 T(n / 2)+\mathbf{c n}$
- $T(n)=O\left(n^{\alpha}\right)$ where $\alpha=\log _{2} 3=1.59 \ldots$

Karatsuba: Details

PolyMul(\mathbf{P}, \mathbf{Q}):

$/ / \mathbf{P}, \mathbf{Q}$ are length $\mathbf{n}=\mathbf{2 k}$ vectors, with $\mathbf{P}[\mathbf{i}], \mathbf{Q}[i]$ being
// the coefficient of $\mathbf{x}^{\mathbf{i}}$ in polynomials \mathbf{P}, \mathbf{Q} respectively.
// Let P0 be elements $\mathbf{0} . . \mathbf{k} \mathbf{- 1}$ of \mathbf{P}; $\mathbf{P 1}$ be elements $\mathbf{k} . . \mathbf{n - 1}$
// Qzero, Qone : similar
If $\mathbf{n}=\mathbf{1}$ then Return $\left(\mathbf{P}[0]^{*} \mathbf{Q}[\mathbf{0}]\right)$ else
$\mathbf{A} \leftarrow \operatorname{PolyMul}(\mathbf{P O}, \mathbf{Q 0})$; $\quad / /$ result is a $(\mathbf{2 k} \mathbf{- 1})$-vector
$\mathbf{B} \leftarrow \operatorname{PolyMul}(\mathbf{P} 1, \mathbf{Q} 1) ; \quad / /$ ditto
Psum $\leftarrow \mathbf{P 0} \mathbf{+} \mathbf{P 1}$; $\quad / /$ add corresponding elements
Qsum $\leftarrow \mathbf{Q 0} \mathbf{+} \mathbf{Q 1} ; \quad / /$ ditto
$\mathbf{C} \leftarrow \operatorname{polyMul}(\mathbf{P s u m}, \mathbf{Q s u m})$; $\quad / /$ another $(\mathbf{2 k} \mathbf{- 1})$-vector
$\mathbf{M i d} \leftarrow \mathbf{C}-\mathbf{A}-\mathbf{B}$; // subtract correspond elements
$\mathbf{R} \leftarrow \mathbf{A}+$ Shift(Mid, $\mathbf{n} / \mathbf{2})+$ Shift($\mathbf{B}, \mathbf{n}) / / \mathrm{a}(\mathbf{2 n} \mathbf{- 1})$-vector
Return(\mathbf{R});

Multiplication

- Polynomials
- Naïve: $\Theta\left(n^{2}\right)$
- Karatsuba: $\quad \Theta\left(n^{1.59 \ldots}\right)$
- Best known: Θ (n log n)
- "Fast Fourier Transform"
- FFT widely used for signal processing
- Integers
- Similar, but some ugly details re: carries, etc. due to Schonhage-Strassen in 1971 gives $\Theta(\mathbf{n} \log \mathbf{n} \log \log \mathbf{n})$
- Improvement in 2007 due to Furer gives $\Theta\left(\mathbf{n} \log \mathbf{n} 2^{\log ^{*}} \mathbf{n}\right)$
- Used in practice in symbolic manipulation systems like Maple

Hints towards FFT: Interpolation

Given set of values at 5 points

Hints towards FFT: Interpolation

Given set of values at 5 points Can find unique degree 4 polynomial going through these points

Multiplying Polynomials by Evaluation \& Interpolation

- Any degree $\mathbf{n - 1}$ polynomial $\mathbf{R}(\mathbf{y})$ is determined by $\mathbf{R}\left(\mathbf{y}_{0}\right), \ldots \mathbf{R}\left(\mathbf{y}_{\mathrm{n}-1}\right)$ for any \mathbf{n} distinct $\mathbf{y}_{0}, \ldots, \mathbf{y}_{\mathrm{n}-1}$
- To compute PQ (assume degree at most n/2-1)
- Evaluate $\mathbf{P}\left(\mathbf{y}_{0}\right), \ldots, \mathbf{P}\left(\mathbf{y}_{\mathrm{n}-1}\right)$
- Evaluate $\mathbf{Q}\left(\mathrm{y}_{0}\right), \ldots, \mathbf{Q}\left(\mathrm{y}_{\mathrm{n}-1}\right)$
- Multiply values $\mathbf{P}\left(\mathbf{y}_{\mathrm{i}}\right) \mathbf{Q}\left(\mathbf{y}_{\mathrm{i}}\right)$ for $\mathrm{i}=\mathbf{0}, \ldots, \mathrm{n}-\mathbf{1}$
- Interpolate to recover PQ

Interpolation

- Given values of degree \mathbf{n}-1 polynomial \mathbf{R} at \mathbf{n} distinct points $\mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{n}-1}$
- $\mathbf{R}\left(\mathbf{y}_{0}\right), \ldots, \mathbf{R}\left(\mathbf{y}_{\mathrm{n}-1}\right)$
- Compute coefficients $\mathbf{c}_{0}, \ldots, \mathrm{c}_{\mathrm{n}-1}$ such that
- $R(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1}$
- System of linear equations in $\mathbf{c}_{0}, \ldots, \mathbf{c}_{\mathrm{n}-1}$

$$
\begin{aligned}
& c_{0}+c_{1} y_{0}+c_{2} y_{0}{ }_{0}+\ldots+c_{n-1} y_{0}{ }_{0}^{n-1}=\mathbf{R}\left(\mathbf{y}_{0}\right) \\
& \mathbf{c}_{0}+c_{1} y_{1}+c_{2} y_{1}^{2}+\ldots+c_{n-1} y_{1} y_{1}^{n-1}=\mathbf{R}\left(\mathbf{y}_{1}\right)
\end{aligned}
$$

$$
c_{0}+c_{1} y_{n-1}+c_{2} y_{n-1}{ }^{2}+. .+c_{n-1} y_{n-1}{ }^{n-1}=R\left(y_{n-1}\right)
$$

Interpolation: \mathbf{n} equations in \mathbf{n} unknowns

- Matrix form of the linear system

$$
\left(\begin{array}{lllll}
1 & y_{0} & y_{0}{ }^{2} & \cdots & y_{0}{ }^{n-1} \\
1 & y_{1} & y_{1}{ }^{2} & \cdots & y_{1}{ }^{n-1} \\
& \cdots & & & \\
& \cdots & & & \\
1 & y_{n-1} & y_{n-1}{ }^{2} & \cdots & y_{n-1}{ }^{n-1}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{n-1}
\end{array}\right)=\left(\begin{array}{c}
R\left(y_{0}\right) \\
R\left(y_{1}\right) \\
\cdot \\
\cdot \\
R\left(y_{n-1}\right)
\end{array}\right)
$$

- Fact: Determinant of the matrix is $\prod_{i<j}\left(\mathbf{y}_{\mathrm{i}}-\mathbf{y}_{\mathrm{j}}\right)$ which is not 0 since points are distinct
- System has a unique solution $\mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{n}-1}$

Hints towards FFT: Evaluation \& Interpolation

$\begin{aligned} & \mathrm{P}: \mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n} / 2-1} \\ & \mathrm{Q}: \mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n} / 2-1} \end{aligned}$	ordinary polynomial multiplication $\Theta\left(\mathbf{n}^{2}\right)$$\mathrm{c}_{\mathrm{k}} \leftarrow \sum_{\mathrm{i}+\mathrm{j}=\mathrm{k}} \mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{j}}$		$R: C_{0}, C_{1}, \ldots, c_{n-1}$
evaluation at $\mathbf{y}_{0}, \ldots, \mathbf{y}_{\mathrm{n}-1}$ $\mathrm{O}(?)$			interpolation from $\mathbf{y}_{0}, \ldots, \mathbf{y}_{n-1}$ O (?)
$\begin{gathered} \mathrm{P}\left(\mathrm{y}_{0}\right), \mathrm{Q}\left(\mathrm{y}_{0}\right) \\ \mathrm{P}\left(\mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{y}_{1}\right) \\ \ldots \\ \mathrm{P}\left(\mathrm{y}_{\mathrm{n}-1}\right), \mathrm{Q}\left(\mathrm{y}_{\mathrm{n}-1}\right) \end{gathered}$	point-wise multiplication of numbers $\mathbf{O}(\mathrm{n})$	$\begin{array}{r} R(y \\ R(y) \\ R\left(y_{n-1}\right. \end{array}$	$\begin{gathered} \leftarrow P\left(y_{0}\right) \cdot Q\left(y_{0}\right) \\ \leftarrow P\left(y_{1}\right) \cdot Q\left(y_{1}\right) \\ \ldots \\ \leftarrow P\left(y_{n-1}\right) \cdot Q\left(y_{n-1}\right) \end{gathered}$

Karatsuba's algorithm and evaluation and interpolation

- Strassen gave a way of doing 2×2 matrix multiplies with fewer multiplications
- Karatsuba's algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications
- $P Q=\left(P_{0}+P_{1} z\right)\left(Q_{0}+Q_{1} z\right)$

$$
=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) z+P_{1} Q_{1} z^{2}
$$

- Evaluate at 0,1,-1 (Could also use other points)
- $A=P(0) Q(0)=P_{0} Q_{0}$
- $C=P(1) Q(1)=\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)$
- $D=P(-1) Q(-1)=\left(P_{0}-P_{1}\right)\left(Q_{0}-Q_{1}\right)$
- Interpolating, Karatsuba's Mid=(C-D)/2 and B=(C+D)/2-A

Evaluation at Special Points

- Evaluation of polynomial at 1 point takes O(n) time
- So $2 n$ points (naively) takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$-no savings
- But the algorithm works no matter what the points are...
- So...choose points that are related to each other so that evaluation problems can share subproblems

The key idea: Evaluate at related points

$-P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots+a_{n-1} x^{n-1}$

$$
\begin{aligned}
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\ldots+a_{n-2} x^{n-2} \\
& \quad+a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots+a_{n-1} x^{n-1} \\
= & P_{\text {even }}\left(x^{2}\right)+x P_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

- $P(-x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}-\ldots \quad-a_{n-1} x^{n-1}$

$$
\begin{aligned}
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\ldots+a_{n-2} x^{n-2} \\
& \quad-\left(a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots+a_{n-1} x^{n-1}\right) \\
= & P_{\text {even }}\left(x^{2}\right)-x P_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

where $P_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2-1}$
and $P_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2-1}$

The key idea: Evaluate at related points

- So... if we have half the points as negatives of the other half
- i.e., $y_{n / 2}=-y_{0}, y_{n / 2+1}=-y_{1}, \ldots, y_{n-1}=-y_{n / 2-1}$
then we can reduce the size n problem of evaluating degree $\mathrm{n}-1$ polynomial P at n points to evaluating 2 degree $n / 2-1$ polynomials $P_{\text {even }}$ and $P_{\text {odd }}$ at $n / 2$ points $y_{0}{ }^{2}, \ldots y_{n / 2-1}{ }^{2}$ and recombine answers with O (1) extra work per point
- But to use this idea recursively we need half of $y_{0}{ }^{2}, \ldots y_{n / 2-1}{ }^{2}$ to be negatives of the other half
- If $y_{n / 4}{ }^{2}=-y_{0}{ }^{2}$, say, then $\left(y_{n / 4} / y_{0}\right)^{2}=-1$
- Motivates use of complex numbers as evaluation points

Complex Numbers

$$
i^{2}=-1
$$

1. add angles
2. multiply lengths (all length 1 here)

$$
e+f i=(a+b i)(c+d i)
$$

$a+b i=\cos \theta+i \sin \theta=e^{i \theta}$
$c+d i=\cos \varphi+i \sin \varphi=e^{i \varphi}$
$e^{2 \pi i}=1$
$\mathbf{e}^{\pi i}=-1$
$e+f i=\cos (\theta+\varphi)+i \sin (\theta+\varphi)=e^{i(\theta+\varphi)}$

Primitive $\mathrm{n}^{\text {th }}$ root of $1 \omega=\omega_{\mathrm{n}}=\mathrm{e}^{i 2 \pi / n}$

Facts about $\omega=\mathrm{e}^{2 \pi i / n}$ for even n

- $\omega=\mathrm{e}^{2 \pi i / n}$ for $i=\sqrt{-1}$
- $\omega^{n}=1$
- $\omega^{n / 2}=-1$
- $\omega^{\mathrm{n} / 2+\mathrm{k}}=-\omega^{\mathrm{k}}$ for all values of k
- $\omega^{2}=e^{2 \pi i / m}$ where $m=n / 2$
- $\omega^{\mathrm{k}}=\cos (2 \mathrm{k} \pi / \mathrm{n})+i \sin (2 \mathrm{k} \pi / \mathrm{n})$ so can compute with powers of ω
- ω^{k} is a root of $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\ldots+1\right)=0$ but for $\mathbf{k} \neq 0, \omega^{\mathbf{k}} \neq 1$ so $\omega^{\mathbf{k}(n-1)}+\omega^{\mathbf{k}(n-2)}+\ldots+1=0$

The key idea for n even

- $P(\omega)=a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}+a_{4} \omega^{4}+\ldots+a_{n-1} \omega^{n-1}$

$$
\begin{aligned}
= & a_{0}+a_{2} \omega^{2}+a_{4} \omega^{4}+\ldots+a_{n-2} \omega^{n-2} \\
& \quad+a_{1} \omega+a_{3} \omega^{3}+a_{5} \omega^{5}+\ldots+a_{n-1} \omega^{n-1} \\
= & P_{\text {even }}\left(\omega^{2}\right)+\omega P_{\text {odd }}\left(\omega^{2}\right)
\end{aligned}
$$

- $P(-\omega)=a_{0}-a_{1} \omega+a_{2} \omega^{2}-a_{3} \omega^{3}+a_{4} \omega^{4}-\ldots \quad-a_{n-1} \omega^{n-1}$

$$
\begin{aligned}
= & a_{0}+a_{2} \omega^{2}+a_{4} \omega^{4}+\ldots+a_{n-2} \omega^{n-2} \\
& \quad=\left(a_{1} \omega+a_{3} \omega^{3}+a_{5} \omega^{5}+\ldots+a_{n-1} \omega^{n-1}\right) \\
= & P_{\text {even }}\left(\omega^{2}\right)-\omega P_{\text {odd }}\left(\omega^{2}\right)
\end{aligned}
$$

where $P_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2-1}$
and $P_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2-1}$

The recursive idea for n a power of 2

Goal:

- Evaluate P at $1, \omega, \omega^{2}, \omega^{3}, \ldots, \omega^{n-1}$
- Now
- $P_{\text {even }}$ and $P_{\text {odd }}$ have degree $\mathbf{n} / 2-1$ where
- $\mathbf{P}\left(\omega^{\mathbf{k}}\right)=\mathrm{P}_{\text {even }}\left(\omega^{2 \mathrm{k}}\right)+\omega^{\mathbf{k}} \mathrm{P}_{\text {odd }}\left(\omega^{2 \mathrm{k}}\right)$
- $\mathbf{P}\left(-\omega^{\mathbf{k}}\right)=\mathrm{P}_{\text {even }}\left(\omega^{2 k}\right)-\omega^{\mathbf{k}} \mathrm{P}_{\text {odd }}\left(\omega^{2 k}\right)$
- Recursive Algorithm
- Evaluate $\mathrm{P}_{\text {even }}$ at $1, \omega^{2}, \omega^{4}, \ldots, \omega^{n-2}$
- Evaluate $\mathrm{P}_{\text {odd }}$ at $1, \omega^{2}, \omega^{4}, \ldots, \omega^{n-2}$

- Combine to compute P at $1, \omega, \omega^{2}, \ldots, \omega^{\mathrm{n} / 2-1}$
- Combine to compute P at $-1,-\omega,-\omega^{2}, \ldots,-\omega^{\mathrm{n} / 2-1}$ (i.e. at $\omega^{n / 2}, \omega^{\mathrm{n} / 2+1}, \omega^{\mathrm{n} / 2+2}, \ldots, \omega^{\mathrm{n}-1}$)

Analysis and more

- Run-time
- $\mathbf{T}(n)=\mathbf{2 \cdot T}(n / 2)+c n$ so $T(n)=\mathbf{O}(n \log n)$
- So much for evaluation ... what about interpolation?
- Given
$=r_{0}=\mathbf{R}(\mathbf{1}), r_{1}=\mathbf{R}(\omega), r_{2}=\mathbf{R}\left(\omega^{2}\right), \ldots, r_{n-1}=\mathbf{R}\left(\omega^{n-1}\right)$
- Compute
$=c_{0}, c_{1}, \ldots, c_{n-1}$ s.t. $R(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$

Interpolation \approx Evaluation: strange but true

- Non-obvious fact:
- If we define a new polynomial $S(x)=r_{0}+r_{1} x+r_{2} x^{2}+\ldots+r_{n-1} x^{n-1}$ where $r_{0}, r_{1}, \ldots, r_{n-1}$ are the evaluations of \mathbf{R} at $1, \omega, \ldots, \omega^{n-1}$
- Then $\mathbf{c}_{\mathbf{k}}=\mathbf{S}\left(\omega^{-k}\right) / \mathbf{n}$ for $\mathbf{k}=\mathbf{0}, \ldots, \mathbf{n}-\mathbf{1}$
- Relies on the fact the interpolation (inverse) matrix has ij entry $\omega^{-(i+j) / n}$ instead of ω^{i+j}
- So...
- evaluate S at $1, \omega^{-1}, \omega^{-2}, \ldots, \omega^{-(n-1)}$ then divide each answer by \mathbf{n} to get the $\mathbf{c}_{0}, \ldots, \mathbf{c}_{\mathrm{n}-1}$
- ω^{-1} behaves just like ω did so the same $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ evaluation algorithm applies !

Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
- Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, ...

Why this is called the discrete Fourier transform

- Real Fourier series
- Given a real valued function f defined on $[0,2 \pi]$ the Fourier series for f is given by $f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\ldots+a_{m} \cos (m x)+\ldots$ where

$$
a_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cos (m x) d x
$$

- is the component of f of frequency m
- In signal processing and data compression one ignores all but the components with large a_{m} and there aren't many since

Why this is called the discrete Fourier transform

- Complex Fourier series
- Given a function f defined on $[0,2 \pi]$ the complex Fourier series for f is given by $f(z)=b_{0}+b_{1} e^{i z}+b_{2} e^{2 i z}+\ldots+b_{m} e^{m i z}+\ldots$ where

$$
b_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(z) e^{-m i z} d z
$$

is the component of f of frequency m

- If we discretize this integral using values at $n 2 \pi / n$ apart equally spaced points between 0 and 2π we get

$$
\overline{\mathrm{b}}_{\mathrm{m}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{f}_{\mathrm{k}} \mathrm{e}^{-2 \mathrm{kmi} \mathrm{\pi} / \mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{f}_{\mathrm{k}} \omega^{-\mathrm{km}} \text { where } \mathrm{f}_{\mathrm{k}}=\mathrm{f}(2 \mathrm{k} \pi / \mathrm{n})
$$

CSE 421: Introduction to Algorithms

Divide and Conquer
 Beyond the Master Theorem Median and Quicksort

Paul Beame

Today

- Divide and conquer examples
- Simple, randomized median algorithm
- Expected O(n) time
- Not so simple, deterministic median algorithm
- Worst case O(n) time
- Expected time analysis for Randomized QuickSort
- Expected O(n log n) time

Order problems: Find the $\mathbf{k}^{\text {th }} \mathbf{s m a l l e s t}$

- Runtime models
- Machine Instructions
- Comparisons
- Minimum
- O(n) time
- n-1 comparisons
- $2^{\text {nd }}$ Smallest
- O(n) time
- ? comparisons

Median Problem

- $k^{\text {th }}$ smallest for $\mathbf{k}=\mathbf{n} / \mathbf{2}$
- Easily done in O(n $\log \mathrm{n})$ time with sorting
- How can the problem be solved in $\mathbf{O}(\mathbf{n})$ time?
- Select(k, n) - find the \mathbf{k}-th smallest from a list of length \mathbf{n}

Divide and Conquer

- $\mathbf{T}(\mathbf{n})=\mathbf{n}+\mathbf{T}(\alpha n)$ for $\alpha<\mathbf{1}$
- Linear time solution
- Select algorithm - in linear time, reduce the problem from selecting the \mathbf{k}-th smallest of \boldsymbol{n} values to the j -th smallest of α n values, for $\alpha<1$

Quick Select

QSelect(k, S)
Choose element \mathbf{x} from \mathbf{S}
$\mathbf{S}_{\mathbf{L}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}<\mathbf{x}\}$
$\mathbf{S}_{\mathbf{E}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}=\mathbf{x}\}$
$\mathbf{S}_{\mathrm{G}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}>\mathbf{x}\}$
if $\left|\mathbf{S}_{\mathrm{L}}\right| \geq \mathbf{k}$
return QSelect($\mathbf{k}, \mathbf{S}_{\mathbf{L}}$)
else if $\left|\mathbf{S}_{\mathbf{L}}\right|+\left|\mathbf{S}_{\mathbf{E}}\right| \geq \mathbf{k}$
return \mathbf{x}
else
return $\mathbf{Q S e l e c t}\left(\mathbf{k}-\left|\mathbf{S}_{\mathbf{L}}\right|-\left|\mathbf{S}_{\mathbf{E}}\right|, \mathbf{S}_{\mathbf{G}}\right)$

Implementing "Choose an element x"

- Ideally, we would choose an \mathbf{x} in the middle, to reduce both sets in half and guarantee progress
- Method 1
- Select an element at random
- Method 2
- BFPRT Algorithm
- Select an element by a complicated, but linear time method that guarantees a good split

Random Selection

Consider a call to QSelect(k, S), and let S' be the elements passed to the recursive call.
With probability at least $1 / 2,\left|\mathbf{S}^{\prime}\right|<3 / 4 \mid$ S

elements of S listed in sorted order
\Rightarrow On average only 2 recursive calls
before the size of S^{\prime} is at most $3 n / 4$

Expected runtime is $\mathrm{O}(\mathrm{n})$

- Given \mathbf{x}, one pass over S to determine $\mathrm{S}_{\mathrm{L}}, \mathrm{S}_{\mathrm{E}}$, and S_{G} and their sizes: cn time.
- Expect 2cn cost before size of S' drops to at most 3|S|/4
- Let $\mathbf{T}(\mathbf{n})$ be the expected running time
- $T(n) \leq T(3 n / 4)+2 c n$
$\leq 2 \mathrm{cn}+(3 / 4) 2 \mathrm{cn}+(3 / 4)^{2} 2 \mathrm{cn}+\ldots$
$\leq 2 \mathrm{cn}\left(1+(3 / 4)+(3 / 4)^{2}+\ldots\right)$

Making the algorithm deterministic

- In O(n) time, find an element that guarantees that the larger set in the split has size at most $3 / 4 \mathrm{n}$

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

- Divide S into $\mathrm{n} / 5$ sets of size 5
- Sort each of these sets of size 5
- Let \mathbf{M} be the set of all medians of the sets of size 5
- Let \mathbf{x} be the median of \mathbf{M}
- $\mathbf{S}_{\mathrm{L}}=\{\mathbf{y}$ in $\mathrm{S} \mid \mathbf{y}<\mathbf{x}\}, \mathrm{S}_{\mathrm{G}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}>\mathbf{x}\}$
- Claim: $\left|\mathbf{S}_{\mathrm{L}}\right|<3 / 4|\mathbf{S}|,\left|\mathbf{S}_{\mathrm{G}}\right|<3 / 4|\mathbf{S}|$

BFPRT, Step 1: Construct sets of size 5, sort each set

$13,15,32,14,95,5,16,45,86,65,62,41,81,52,32,32,12,73,25,81,47,8$, $69,9,7,81,18,25,42,91,64,98,96,91,6,51,21,12,36,11,11,9,5,17,77$

13	5	62	32	47	81	64	51	11
15	16	41	12	8	18	98	21	9
32	45	81	73	69	25	96	12	5
14	86	52	25	9	42	91	36	17
95	65	32	81	7	91	6	11	77

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

BFPRT, Step 2: Find median of column medians

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

BFPRT Recurrence

- Sorting all n/5 lists of size 5
- c'n time
- Finding median of set M of medians
- Recursive computation: T(n/5)
- Computing sets $\mathrm{S}_{\mathrm{L}}, \mathrm{S}_{\mathrm{E}}, \mathrm{S}_{\mathrm{G}}$ and S^{\prime}
- c"n time
- Solving selection problem on S'
- Recursive computation: $\mathbf{T}(\mathbf{3 n} / 4)$ since $\left|\mathbf{S}^{\prime}\right| \leq 3 / 4 \mathrm{n}$

$T(n) \leq c n+T(n / 5)+T(3 n / 4)$ is $O(n)$

- Key property
- $3 / 4+1 / 5<1$ (The sum is $19 / 20$)
- Sum of problem sizes decreases by 19/20 factor per level of recursion
- Overhead per level is linear in the sum of the problem sizes
- Overhead decreases by 19/20 factor per level of recursion
- Total overhead is linear (sum of geometric series with constant ratio and linear largest term)

Quick Sort

QuickSort(S)
if \mathbf{S} is empty, return
Choose element \mathbf{x} from \mathbf{S} "pivot"
$\mathbf{S}_{\mathbf{L}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}<\mathbf{x}\}$
$\mathbf{S}_{\mathbf{E}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}=\mathbf{x}\}$
$\mathbf{S}_{\mathbf{G}}=\{\mathbf{y}$ in $\mathbf{S} \mid \mathbf{y}>\mathbf{x}\}$
return [QuickSort($\left.\mathbf{S}_{\mathrm{L}}\right), \mathbf{S}_{\mathrm{E}}$, QuickSort $\left(\mathbf{S}_{\mathrm{G}}\right)$]

QuickSort

- Pivot Selection
- Choose the median
- $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathrm{n} / \mathbf{2})+\mathbf{T}(\mathrm{n} / \mathbf{2})+\mathrm{cn}, \mathbf{O}(\mathrm{n} \log \mathrm{n})$
- Choose arbitrary element
- Worst case - O(n²)
- Average case - O(n log n)
- Choose random pivot
- Expected time - O(n log n)

Expected run time for QuickSort: "Global analysis"

- Count comparisons
- a_{i}, a_{j} - elements in positions i and j in the final sorted list. p_{ij} the probability that \mathbf{a}_{i} and a_{j} are compared
- Expected number of comparisons:

$$
\sum_{i<j} p_{i j}
$$

Lemma: $\mathrm{P}_{\mathrm{ij}} \leq 2 /(\mathrm{j}-\mathrm{i}+1)$

If a_{i} and a_{j} are compared then it must be during the call when they end up in different subproblems

- Before that, they aren't compared to each other
- After they aren't compared to each other

During this step they are only compared if one of them is the pivot
Since all elements between a_{i} and a_{j} are also in the subproblem this is 2 out of at least $j-i+1$ choices

Average runtime is 2 nln n

$$
\begin{aligned}
\sum_{\mathrm{i}<j} \mathrm{p}_{\mathrm{ij}} & \leq \sum_{\mathrm{i}<\mathrm{j}} 2 /(\mathrm{j}-\mathrm{i}+1) \quad \text { write } \mathrm{j}=\mathrm{k}+\mathrm{i} \\
& =2 \sum_{\mathrm{i}=1}^{n-1} \sum_{\mathrm{k}=1}^{n-1} 1 /(\mathrm{k}+1) \\
& \leq 2(\mathrm{n}-1)\left(H_{n}-1\right)
\end{aligned}
$$

where $H_{n}=1+1 / 2+1 / 3+1 / 4+\ldots+1 / n$

$$
=\ln \mathrm{n}+\mathbf{O}(\mathbf{1})
$$

$\leq \mathbf{2 n} \ln \mathbf{n}+\mathbf{O}(\mathrm{n}) \leq 1.387 \mathrm{nlog}_{2} \mathrm{n}$

