CSE 421: Introduction to Algorithms

Dealing with NP-completeness

Paul Beame
What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on “interval graphs”
 - Exactly the case for interval scheduling!
 - search the literature to see if special cases already solved
What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Maybe you can’t get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - Given graph $G = (V, E)$, start with an empty cover
 - While there are still edges in E left
 - Choose an edge $e = \{u, v\}$ in E and add both u and v to the cover
 - Remove all edges from E that touch either u or v.
 - Edges chosen don’t share any vertices so optimal cover size must be at least # of edges chosen
What to do if the problem you want to solve is NP-hard

- Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless P=NP

 - E.g. **Coloring Problem**: Given a graph $G=(V,E)$ find the smallest k such that G has a k-coloring.

 - No approximation ratio better than $4/3$ is possible unless $P=NP$

 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in <4 colors. i.e. if it can be 3-colored
Travelling Sales Problem

- **TSP**
 - Given a weighted graph G find a smallest weight tour that visits all vertices in G

- **NP-hard**

- Notoriously easy to obtain close to optimal solutions
Minimum Spanning Tree Approximation
Minimum Spanning Tree Approximation: Factor of 2

Any tour contains a spanning tree

\[\text{MST}(G) \leq \text{TOUR}_{\text{OPT}}(G) \leq 2 \text{MST}(G) \leq 2 \text{TOUR}_{\text{OPT}}(G) \]
Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 - $c(u, w) \leq c(u, v) + c(v, w)$
Minimum Spanning Tree Approximation: Triangle Inequality

Can shortcut edges
• Go to next new vertex on the Euler tour
Minimum Spanning Tree Approximation: Factor of 2

$$TOUR_{OPT}(G) \leq 2 \text{MST}(G) \leq 2 \text{TOUR}_{OPT}(G)$$
Christofides Algorithm: A factor 3/2 approximation

- Any Eulerian subgraph of the weighted complete graph will do
 - Eulerian graphs require that all vertices have even degree so

- Christofides Algorithm
 - Compute an MST T
 - Find the set O of odd-degree vertices in T
 - Add a minimum-weight perfect matching M on the vertices in O to T to make every vertex have even degree
 - There are an even number of odd-degree vertices!
 - Use an Euler Tour E in $T \cup M$ and then shortcut as before

- **Claim:** $\text{Cost}(E) \leq 1.5 \ \text{TOUR}_{\text{OPT}}$
Christofides Approximation
Christofides Approximation

Any tour costs at least the cost of two matchings on O

Claim: $2 \text{ Cost}(M) \leq \text{ TOUR}_{OPT}$
Knapsack Problem

- For any $\varepsilon > 0$ can get an algorithm that gets a solution within $(1 + \varepsilon)$ factor of optimal with running time $O(n^2(1/\varepsilon)^2)$
 - “Polynomial-Time Approximation Scheme” or PTAS
 - Based on maintaining just the high order bits in the dynamic programming solution.
What to do if the problem you want to solve is NP-hard

More on approximation algorithms

- Recent research has classified problems based on what kinds of approximations are possible if $P \neq NP$
 - **Best:** $(1+\varepsilon)$ factor for any $\varepsilon > 0$.
 - packing and some scheduling problems, TSP in plane
 - Some fixed constant factor > 1, e.g. $2, 3/2, 100$
 - Vertex Cover, TSP in space, other scheduling problems
 - $\Theta(\log n)$ factor
 - Set Cover, Graph Partitioning problems
 - **Worst:** $\Omega(n^{1-\varepsilon})$ factor for any $\varepsilon > 0$
 - Clique, Independent-Set, Coloring
What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast “on average”.
 - To even try this one needs a model of what a typical instance is.
 - Typically, people consider “random graphs”
 - e.g. all graphs with a given # of edges are equally likely
 - Problems:
 - real data doesn’t look like the random graphs
 - distributions of real data aren’t analyzable
What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints/certificates in a more efficient way and hope it is quick enough

 Backtracking search
 - E.g. For SAT there are 2^n possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - e.g. After setting $x_1 \leftarrow 1$, $x_2 \leftarrow 0$ we don’t even need to set x_3 or x_4 to know that it won’t satisfy
 $$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_4 \lor \neg x_3) \land (x_1 \lor \neg x_4)$$

 - Related technique: **branch-and-bound**

 - Backtracking search can be very effective even with exponential worst-case time
 - For example, the best SAT algorithms used in practice are all variants on backtracking search and can solve surprisingly large problems – more later
What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms

- Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We’ll mention several on following slides
Heuristic algorithms for NP-hard problems

- **local search** for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution S
 - While there is a neighbor T of S that is better than S
 - $S \leftarrow T$
 - Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case
e.g., Neighboring solutions for TSP

Solution \(S \)

Solution \(T \)

Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other.
Heuristic algorithms for NP-hard problems

- randomized local search
 - start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers

- Metropolis algorithm
 - like (randomized) local search but at each step choose a random neighbor. Always move if it is better but sometimes move to a worse neighbor with some fixed probability
 - often used in practice but slow to converge in the worst case and still can get stuck in local optimum

- simulated annealing
 - like Metropolis algorithm but probability of going to a worse neighbor is set to decrease with time on a “cooling schedule” as, presumably, solution is closer to optimal
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)
 - slower to converge than Metropolis
 - most improvement occurs at some fixed temperature
 - answers not much better than Metropolis
Heuristic algorithms for NP-hard problems

- **genetic algorithms**
 - view each solution as a **string** (analogy with DNA)
 - maintain a **population of good solutions**
 - allow **random mutations** of single characters of individual solutions
 - **combine two solutions** by taking part of one and part of another (analogy with crossover in **sexual reproduction**)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with **natural selection** -- survival of the fittest).

- little evidence that they work well and they are usually very slow
 - as much religion as science
Heuristic algorithms

- **artificial neural networks**
 - based on very elementary model of human neurons
 - **Set up a circuit of artificial neurons**
 - each artificial neuron is an analog circuit gate whose computation depends on a set of **connection strengths**
 - **Train the circuit**
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - **The network is now ready to use**

- useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems
Other directions

- DNA computing
 - Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
 - For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - If any string remains the answer is a YES.
 - Relies on fact that Avogadro’s # 6×10^{23} is large to get enough strings to fit in a test-tube.
 - Error-prone & problem sizes typically very small!
Other directions

Quantum computing

- Use physical processes at the quantum level to implement “weird” kinds of circuit gates
 - unitary transformations
- Quantum objects can be in a superposition of many pure states at once
 - can have n objects together in a superposition of 2^n states
- Each quantum circuit gate operates on the whole superposition of states at once
 - inherent **parallelism** but classical randomized algorithms have a similar parallelism: **not enough on its own**
 - Advantage over classical: parallel copies interfere with each other.

- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.