
1

Satisfiability Algorithms

• Local search (incomplete)
– GSAT [Selman,Levesque,Mitchell 92]

– Walksat [Kautz,Selman 96]

• Backtracking search (complete)
– DPLL [Davis,Putnam 60]

[Davis,Logeman,Loveland 62]

– DPLL + “clause learning” GRASP, SATO, zchaff

2

CNF Satisfiability

F= (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x4 ∨ x3)

satisfying assignment for F

x1, x2, x3, x4

Simplify(F, l) for l = x3

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2) ∧ (x4 ∨ x3)

(x1 ∨ x2 ∨ x4) ∧ x2 ∧ x4

F is satisfied if all clauses disappear under

simplification by the assignment

3

Backtracking search/DPLL

Repeat

Select a literal l (some x or ¬x)

F ← Simplify(F, l)

While F contains a 1-clause l ’

F ← Simplify(F, l ’)

If all clauses removed return SAT

If there is a 0-clause

Backtrack to last free step

and flip assignment

Free step

Unit

propagation

4

Recursive view of DPLL

Algorithm (w/o unit propagation)

Remove all clauses
containing x

Shrink all clauses
containing ¬x

DPLL(F)

if F is empty report satisfiable and halt

if F contains the empty clause Λ

return

else choose a literal x
DPLL(Simplify(F,x))
DPLL(Simplify(F,¬x))

With unit propogation x is 1-clause

5

Clauses
1. a∨b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

DPLL on unsat formula
a

¬a

b
¬b b

3

¬b

1

a∨ b∨ c

c
¬c

2

a∨¬c

c

a

b

d 3

4 5

¬c c

b

¬b

¬a∨ d ¬d∨ b

¬b

Residual
Formula

6

Extending DPLL: Clause Learning

• When backtracking in DPLL, add new
clauses corresponding to causes of failure of
the search

• Added conflict clauses

– Capture reasons of conflicts

– Obtained via unit propagations from known ones

– Reduce future search by producing conflicts

sooner

7

Clause Learning

• At every backtrack point derive a new
clause to add to F that can be
interpreted as a “reason” for that
backtrack

(a ∨ b ∨ d) (a ∨ b) (c ∨ b) (c ∨ a) (a ∨ d ∨ e) (b ∨ e)

a

e

1 2 3 4 5 6

5 d

6

b
1

#

Learn (a ∨ e)

8

Conflict Graphs

learn
(x1 ∨ x2 ∨ x3)

learn
(p ∨ q ∨ ¬ b)

learn
t

¬p

¬q

b

a

¬x1

¬x2

¬x3

y

¬y

false
¬t

Known Clauses
(p ∨ q ∨ a)

(¬ a ∨ ¬ b ∨ ¬ t)
(t ∨ ¬ x1)
(t ∨ ¬ x2)

…

Current decisions
p = false
q = false
b = true

9

Clause Learning is Critical to

Performance

• The best current SAT algorithms rely
heavily on Clause Learning, e.g.

Minisat, Glucose, Lingeling

• Gives orders of magnitude improvement
on real-world problems!

