Today’s topics
• Image Segmentation
• Strip Mining
• Reading: 7.5, 7.6, 7.10-7.12

Minimum Cut Applications
• Image Segmentation
• Open Pit Mining / Task Selection Problem
• Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T.
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T.

Image Segmentation

Separate Lion from Savana
Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij}: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$

Pixel graph to flow graph

MinCut Construction

S, T is a cut if S, T is a partition of the vertices with s in S and t in T

The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation
Generalization

- Precedence graph $G=(V,E)$
- Each v in V has a profit $p(v)$
- A set F is feasible if when w in F, and (v,w) in E, then v in F.
- Find a feasible set to maximize the profit

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Precedence graph construction

- Precedence graph $G=(V,E)$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges

Find a finite value cut with at least two vertices on each side of the cut
The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

Setting the costs

- If \(p(v) > 0 \),
 - \(\text{cap}(v,t) = p(v) \)
 - \(\text{cap}(s,v) = 0 \)
- If \(p(v) < 0 \)
 - \(\text{cap}(s,v) = -p(v) \)
 - \(\text{cap}(v,t) = 0 \)
- If \(p(v) = 0 \)
 - \(\text{cap}(s,v) = 0 \)
 - \(\text{cap}(v,t) = 0 \)

Minimum cut gives optimal solution

Why?

Computing the Profit

- \(\text{Cost}(W) = \sum_{w \in W; p(w) < 0} p(w) \)
- \(\text{Benefit}(W) = \sum_{w \in W; p(w) > 0} p(w) \)
- \(\text{Profit}(W) = \text{Benefit}(W) - \text{Cost}(W) \)

- Maximum cost and benefit
 - \(C = \text{Cost}(V) \)
 - \(B = \text{Benefit}(V) \)

Express \(\text{Cap}(S,T) \) in terms of \(B, C, \text{Cost}(T), \text{Benefit}(T), \) and \(\text{Profit}(T) \)

\[
\text{Cap}(S,T) = \text{Cost}(T) + \text{Ben}(S) + \text{Cost}(T) + \text{Ben}(S) + \text{Ben}(T) - \text{Ben}(T) \\
= B + \text{Cost}(T) - \text{Ben}(T) = B - \text{Profit}(T)
\]