CSE 421
Algorithms
Lecture 22
Network Flow, Part 2
Network Flow
Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow
Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R
Find an s-t path P in G_R with capacity $b > 0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations
Cuts in a graph

- **Cut**: Partition of V into disjoint sets S, T with s in S and t in T.
- **$\text{Cap}(S,T)$**: sum of the capacities of edges from S to T
- **$\text{Flow}(S,T)$**: net flow out of S
 - Sum of flows out of S minus sum of flows into S

- $\text{Flow}(S,T) \leq \text{Cap}(S,T)$
What is $\text{Cap}(S, T)$ and $\text{Flow}(S, T)$

$S = \{s, a, b, e, h\}$, \hspace{1cm} $T = \{c, f, i, d, g, t\}$
What is Cap(S,T) and Flow(S,T)

S={s, a, b, e, h}, \hspace{1cm} T = \{c, f, i, d, g, t\}

Cap(S,T) = 95, \hspace{1cm} Flow(S,T) = 80 - 15 = 65
Minimum value cut
Find a minimum value cut
Find a minimum value cut
Find a minimum value cut
MaxFlow – MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity
Let S be the set of vertices in G_R reachable from s with paths of positive capacity.

What can we say about the flows and capacity between u and v?
Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin by looking for a maximum flow.
Performance

- The worst case performance of the Ford-Fulkerson algorithm is horrible
Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $O(m^2 \log(C))$ time algorithm for network flow
- Find the shortest augmenting path
 - $O(m^2 n)$ time algorithm for network flow
- Find a blocking flow in the residual graph
 - $O(mn \log n)$ time algorithm for network flow
Problem Reduction

• Reduce Problem A to Problem B
 – Convert an instance of Problem A to an instance of Problem B
 – Use a solution of Problem B to get a solution to Problem A

• Practical
 – Use a program for Problem B to solve Problem A

• Theoretical
 – Show that Problem B is at least as hard as Problem A
Problem Reduction Examples

• Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

 Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem
Undirected Network Flow

• Undirected graph with edge capacities
• Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem
Bipartite Matching

• A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoint sets X,Y

• A matching M is a subset of the edges that does not share any vertices

• Find a matching as large as possible
Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA 311
PB 331
ME 332
DG 401
AK 421
Converting Matching to Network Flow
Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths