CSE 421
Algorithms
Lecture 21
Network Flow, Part 1
Network Flow
Outline

• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem
Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow
Flow Example
Flow assignment and the residual graph
Network Flow Definitions

• Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
• Capacities on the edges, $c(e) \geq 0$
• Problem, assign flows $f(e)$ to the edges such that:
 – $0 \leq f(e) \leq c(e)$
 – Flow is conserved at vertices other than s and t
 • Flow conservation: flow going into a vertex equals the flow going out
 – The flow leaving the source is as large as possible
Flow Example
Find a maximum flow
Flow Example
Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity $c - f$
 - G_R: edge e'' from v to u with capacity f
Flow assignment and the residual graph
Augmenting Path Algorithm

• Augmenting path
 – Vertices v_1, v_2, \ldots, v_k
 • $v_1 = s$, $v_k = t$
 • Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$

![Diagram of network flow](image-url)
Build the residual graph

Residual graph:
Find two augmenting paths
Augmenting Path Lemma

- Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.
Proof

• Add b units of flow along the path P
• What do we need to verify to show we have a valid flow after we do this?
Ford-Fulkerson Algorithm (1956)

while not done

 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations