Shortest Paths with Dynamic Programming

Bellman-Ford Algorithm

Paul Beame

Shortest Path Problem

- Dijkstra’s Single Source Shortest Paths Algorithm
 - $O(m \log n)$ time, positive cost edges
- Bellman-Ford Algorithm
 - $O(mn)$ time for graphs with negative cost edges

Shortest paths with negative cost edges

- Dijsktra’s algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length ∞
 - but these would be infinitely long...

- What if we just wanted shortest paths of exactly i edges?

Bellman-Ford

- Observe that the recursion for $\text{Cost}(s, w, i)$ doesn’t change s
 - Only store an entry for each w and i
 - $\text{OPT}_i(w)$

 - $\text{OPT}_0(w) = \begin{cases} 0 & \text{if } w = s \\ \infty & \text{otherwise} \end{cases}$
 - $\text{OPT}_i(w) = \min_{(v,w) \in E}(\text{OPT}_{i-1}(v) + c_{vw})$

Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from s to t based on the # of edges in the path
 - Let $\text{Cost}(s, w, i) =$ cost of minimum-length path from s to w using exactly i edges.

 - $\text{Cost}(s, w, 0) = \begin{cases} 0 & \text{if } w = s \\ \infty & \text{otherwise} \end{cases}$

 - $\text{Cost}(s, w, i) = \min_{(v,w) \in E}(\text{Cost}(s, v, i-1) + c_{vw})$

Shortest paths with negative cost edges (Bellman-Ford)

- Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most $n-1$ edges
 - If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can’t have $-$ve cost
Algorithm, Version 1

```c
foreach w
    M[0, w] = infinity;
    M[0, s] = 0;
for i = 1 to n-1
    foreach w
        M[i, w] = min_i(M[i-1,v] + cost[v,w]);
```

What if we want to allow **up to** \(i \) edges rather than require exactly \(i \) edges?

Algorithm, Version 2

```c
foreach w
    M[0, w] = infinity;
    M[0, s] = 0;
for i = 1 to n-1
    foreach w
        M[i, w] = min(M[i-1, w], min_v(M[i-1,v] + cost[v,w]));
```

Now \(M[i,w] \leq M[i-1,w] \leq \ldots \leq M[0,w] \).
If all we only care about is finding short paths we can use the shortest length we have found and forget # of hops.

Algorithm, Version 3

```c
foreach w
    M[w] = infinity;
    M[s] = 0;
for i = 1 to n-1
    foreach w
        M[w] = min(M[w], min_v(M[v] + cost[v,w]));
```

Correctness Proof for Algorithm 3

- Key lemma – at the end of iteration \(i \), for all \(w \), \(M[w] \leq M[i, w] \);

- Reconstructing the path:
 - Set \(P[w] = v \), whenever \(M[w] \) is updated from vertex \(v \)

Bellman-Ford

![Bellman-Ford Algorithm Graph](image)
Bellman-Ford

Other details

- Can run algorithm and stop early if M doesn’t change in an iteration
- Even better, one can update only neighbors x of vertices w whose M value changed in an iteration
If the pointer graph has a cycle, then the graph has a negative cost cycle

- If \(P[w] = v \) then \(M[w] \geq M[v] + \text{cost}(v,w) \)
- Equal when \(w \) is updated
- \(M[v] \) could later be reduced after update
- Let \(v_1, v_2, ..., v_k \) be a cycle in the pointer graph with \((v_k, v_1) \) the last edge added
 - Just before the update
 - \(M[v_j] \geq M[v_{j+1}] + \text{cost}(v_{j+1}, v_j) \) for \(j < k \)
 - \(M[v_k] > M[v_1] + \text{cost}(v_1, v_k) \)
 - Adding everything up
 - \(0 > \text{cost}(v_1, v_2) + \text{cost}(v_2, v_3) + ... + \text{cost}(v_k, v_1) \)

Finding negative cost cycles

- What if you want to find negative cost cycles?

Foreign Exchange Arbitrage

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
- Update distances in order of topological sort
- Only one pass through vertices required
- \(O(n+m) \) time