CSE 421
Algorithms
Richard Anderson
Lecture 17
Dynamic Programming
Optimal linear interpolation

Optimal linear interpolation with K segments

\[
\text{Error} = \sum (y_i - ax_i - b)^2
\]
Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

• Optimal segmentation with three segments
 – $\min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$
 – $O(n^2)$ combinations considered

• Generalization to k segments leads to considering $O(n^{k-1})$ combinations
Opt\(_{k}[j]\) : Minimum error approximating \(p_1 \ldots p_j\) with \(k\) segments

Express \(Opt_{k}[j]\) in terms of \(Opt_{k-1}[1], \ldots, Opt_{k-1}[j]\)

\[Opt_{k}[j] = \min_i \{ Opt_{k-1}[i] + E_{i,j} \} \text{ for } 0 < i < j\]
Optimal sub-solution property

Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem.
Optimal multi-segment interpolation

Compute $\text{Opt}[k, j]$ for $0 < k < j < n$

for $j := 1$ to n
\[\text{Opt}[1, j] = E_{1,j}; \]

for $k := 2$ to $n-1$
\[\text{for } j := 2 \text{ to } n \]
\[t := E_{1,j} \]
\[\text{for } i := 1 \text{ to } j - 1 \]
\[t = \min(t, \text{Opt}[k-1, i] + E_{i,j}) \]
\[\text{Opt}[k, j] = t \]
Determining the solution

• When Opt\([k,j]\) is computed, record the value of \(i\) that minimized the sum
• Store this value in an auxiliary array
• Use to reconstruct solution
Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + C \times \#Segments
Penalty cost measure

- $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$
 Subset Sum Problem

- Let $w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

• $\text{Opt}[j, K]$ the largest subset of $\{w_1, \ldots, w_j\}$ that sums to at most K

• $\{2, 4, 7, 10\}$
 – $\text{Opt}[2, 7] =$
 – $\text{Opt}[3, 7] =$
 – $\text{Opt}[3, 12] =$
 – $\text{Opt}[4, 12] =$
Subset Sum Recurrence

• $\text{Opt}[j,K]$ the largest subset of $\{w_1, \ldots, w_j\}$ that sums to at most K
Subset Sum Grid

\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j) \]

{2, 4, 7, 10}
Subset Sum Code

for j = 1 to n
 for k = 1 to W
 Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-w_j] + w_j)
Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \{I_1, I_2, ... I_n\}
 - Weights \{w_1, w_2, ..., w_n\}
 - Values \{v_1, v_2, ..., v_n\}
 - Bound K
- Find set \(S\) of indices to:
 - Maximize \(\sum_{i \in S} v_i\) such that \(\sum_{i \in S} w_i \leq K\)
Knapsack Recurrence

Subset Sum Recurrence:

$$\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + w_j)$$

Knapsack Recurrence:
Knapsack Grid

Opt\[j, K\] = max(Opt\[j – 1, K\], Opt\[j – 1, K – w_j\] + v_j)

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}
Dynamic Programming Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

• Maximize income in placing billboards
 – \(b_i = (p_i, v_i) \), \(v_i \): value of placing billboard at position \(p_i \)

• Constraint:
 – At most one billboard every five miles

• Example
 – \(\{(6, 5), (8, 6), (12, 5), (14, 1)\} \)
Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], ..., Opt[n]
- What is Opt[k]?

Input $b_1, ..., b_n$, where $b_i = (p_i, v_i)$, position and value of billboard i
Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from subproblems?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
Solution

j = 0; // j is five miles behind the current position

// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

 while (P[j] < P[k] - 5)
 j := j + 1;

 j := j - 1;

 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);
Optimal line breaking and hyphenation

• Problem: break lines and insert hyphens to make lines as balanced as possible

• Typographical considerations:
 – Avoid excessive white space
 – Limit number of hyphens
 – Avoid widows and orphans
 – Etc.
Penalty Function

• Pen(i, j) – penalty of starting a line at position i, and ending at position j

Optimal line breaking and hyphenation is computed with dynamic programming

• Key technical idea
 – Number the breaks between words/syllables
String approximation

• Given a string S, and a library of strings $B = \{b_1, \ldots, b_m\}$, construct an approximation of the string S by using copies of strings in B.

$B = \{abab, bbbaaa, ccbb, ccaacc\}$

$S = abacccbbbaabbccbbbcacaabab$
Formal Model

• Strings from B assigned to non-overlapping positions of S
• Strings from B may be used multiple times
• Cost of δ for unmatched character in S
• Cost of γ for mismatched character in S
 – MisMatch(i, j) – number of mismatched characters of b_j, when aligned starting with position i in s.
Design a Dynamic Programming Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . . , Opt[n]
• What is Opt[k]?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{Mismatch}(i,j) =$ number of mismatched characters with b_j when aligned starting at position i of S.
Opt[k] = fun(Opt[0],...,Opt[k-1])

- How is the solution determined from subproblems?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{MisMatch}(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S.$
Solution

for i := 1 to n
 Opt[k] = Opt[k-1] + \delta;

for j := 1 to |B|
 p = i - len(b_j);
 Opt[k] = min(Opt[k], Opt[p-1] + \gamma \text{MisMatch}(p, j));