Dynamic Programming

• Weighted Interval Scheduling
• Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Optimality Condition

• $Opt[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j
• $Opt[j] = \max(Opt[j-1], w_j + Opt[p[j]])$
 – Where $p[j]$ is the index of the last interval which finishes before I_j starts

Algorithm

MaxValue(j) =
 if $j = 0$ return 0
 else
 return $\max(\maxValue(j-1), w_j + \maxValue(p[j]))$

Worst case run time: 2^n

A better algorithm

$M[j]$ initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if $j = 0$ return 0;
 else if $M[j] = -1$ return $M[j]$;
 else
 $M[j] = \max(\maxValue(j-1), w_j + \maxValue(p[j]));$
 return $M[j]$;

Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Computing the solution

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Record which case is used in Opt computation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Optimal linear interpolation

Error = \(\sum (y_i - ax_i - b)^2 \)

What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with two line segments
What is the optimal linear interpolation with \(n \) line segments

\[\text{Notation} \]
- Points \(p_1, p_2, \ldots, p_n \) ordered by \(x \)-coordinate (\(p_i = (x_i, y_i) \))
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with two segments
- Give an equation for the optimal interpolation of \(p_1, \ldots, p_n \) with two line segments
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with \(k \) segments
- Optimal segmentation with three segments
 - \(\min_{i,j} (E_{1i} + E_{ij} + E_{jn}) \)
 - \(O(n^2) \) combinations considered
- Generalization to \(k \) segments leads to considering \(O(n^{k-1}) \) combinations

\(\text{Opt}_{k}[j] \) : Minimum error approximating \(p_1, \ldots, p_j \) with \(k \) segments

How do you express \(\text{Opt}_k[j] \) in terms of \(\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j] \)?

Optimal sub-solution property
- Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem
Optimal multi-segment interpolation

Compute Opt\[k, j\] for 0 < k < j < n

for j := 1 to n
 Opt\[1, j\] = E_{1,j};
for k := 2 to n-1
 for j := 2 to n
 t := E_{1,j}
 for i := 1 to j - 1
 t = min (t, Opt\[k-1, i\] + E_{i,j})
 Opt\[k, j\] = t

Determining the solution

- When Opt\[k,j\] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments

Penalty cost measure

- Opt\[j\] = min(E_{1,j}, \min(\text{Opt}[i] + E_{i,j} + P))