CSE 421
Algorithms
Richard Anderson
Lecture 16
Dynamic Programming
Dynamic Programming

• Weighted Interval Scheduling
• Given a collection of intervals \(I_1, \ldots, I_n \) with weights \(w_1, \ldots, w_n \), choose a maximum weight set of non-overlapping intervals
Optimality Condition

• $\text{Opt}[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j

• $\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]])$
 – Where $p[j]$ is the index of the last interval which finishes before I_j starts
Algorithm

MaxValue(j) =
 if j = 0 return 0
 else
 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: 2^n
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

\[\text{Opt}[j] = \text{max} (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]
Computing the solution

$$\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]])$$

Record which case is used in Opt computation
Dynamic Programming

• The most important algorithmic technique covered in CSE 421

• Key ideas
 – Express solution in terms of a polynomial number of sub problems
 – Order sub problems to avoid recomputation
Optimal linear interpolation

Error = \sum (y_i - ax_i - b)^2
What is the optimal linear interpolation with three line segments?
What is the optimal linear interpolation with two line segments?
What is the optimal linear interpolation with n line segments?
Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with two segments

• Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $\min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$
 - $O(n^2)$ combinations considered

- Generalization to k segments leads to considering $O(n^{k-1})$ combinations
Opt_{k}[j] : Minimum error approximating p_1 \ldots p_j with k segments

How do you express Opt_{k}[j] in terms of Opt_{k-1}[1], \ldots, Opt_{k-1}[j]?
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem
Optimal multi-segment interpolation

Compute $\text{Opt}[k, j]$ for $0 < k < j < n$

for $j := 1$ to n
 $\text{Opt}[1, j] = E_{1,j}$
for $k := 2$ to $n-1$
 for $j := 2$ to n
 $t := E_{1,j}$
 for $i := 1$ to $j - 1$
 $t = \min (t, \text{Opt}[k-1, i] + E_{i,j})$
 $\text{Opt}[k, j] = t$
Determining the solution

- When Opt\([k,j]\) is computed, record the value of \(i\) that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution
Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments
Penalty cost measure

- \(\text{Opt}[j] = \min(E_{1,j}, \min_i (\text{Opt}[i] + E_{i,j} + P)) \)