Recurrence Examples

- $T(n) = 2T(n/2) + cn$
 - $O(n \log n)$
- $T(n) = T(n/2) + cn$
 - $O(n)$
- More useful facts:
 - $\log_k n = \log_2 n / \log_2 k$
 - $k^{\log n} = n^{\log k}$

Unrolling the recurrence

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

\[
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
= \begin{bmatrix}
r = ae + bf & s = ag + bh \\
t = ce + df & u = cg + dh
\end{bmatrix}
\]

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices. The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices.

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?
What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

\[T(n) = 4T(n/2) + n \]

\[T(n) = 2T(n/2) + n^2 \]

\[T(n) = 2T(n/2) + n^{1/2} \]

Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth

What you really need to know about recurrences

• Work per level changes geometrically with the level
 – Geometrically increasing (x > 1)
 – The bottom level wins
 – Geometrically decreasing (x < 1)
 – The top level wins
 – Balanced (x = 1)
 – Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- \(T(n) = n + 5T(n/8) \)
- \(T(n) = n + 9T(n/8) \)
- \(T(n) = n^2 + 4T(n/2) \)
- \(T(n) = n^3 + 7T(n/2) \)
- \(T(n) = n^{1/2} + 3T(n/4) \)

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

\[\begin{pmatrix} r & s \\ t & u \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} e & g \\ f & h \end{pmatrix} \]

Where:

- \(p_1 = (b + d)(f + g) \)
- \(p_2 = (c + d)e \)
- \(p_3 = a(g - h) \)
- \(p_4 = d(f - e) \)
- \(p_5 = (a - b)h \)
- \(p_6 = (c - d)(e + g) \)
- \(p_7 = (b - d)(f + h) \)

Recurrence for Strassen’s Algorithms

- \(T(n) = 7T(n/2) + cn^2 \)
- What is the runtime?

BFPRT Recurrence

- \(T(n) \leq T(3n/4) + T(n/5) + 20n \)

What bound do you expect?