Announcements

• Midterm
 – Monday, Oct 31, in class, closed book
 – Through section 5.2
 – Midterm review

• Homework 5 available
Recurrence Examples

• \(T(n) = 2 \ T(n/2) + cn \)
 – \(O(n \log n) \)

• \(T(n) = T(n/2) + cn \)
 – \(O(n) \)

• More useful facts:
 – \(\log_k n = \frac{\log_2 n}{\log_2 k} \)
 – \(k^{\log n} = n^{\log k} \)

\[
\sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x}
\]
Unrolling the recurrence
Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
\[
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
=
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h
\end{bmatrix}
\]

\[
\begin{align*}
 r &= ae + bf \\
 s &= ag + bh \\
 t &= ce + df \\
 u &= cg + dh
\end{align*}
\]

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices.
Recursive Matrix Multiplication

• How many recursive calls are made at each level?

• How much work in combining the results?

• What is the recurrence?
What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:
$T(n) = 4T(n/2) + n$

Total Work

$$\sum_{k=0}^{\log n} 2^k n = (2n - 1)n$$
$T(n) = 2T(n/2) + n^2$
\[T(n) = 2T(n/2) + n^{1/2} \]
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth
What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing \((x > 1)\)
 - The bottom level wins
- Geometrically decreasing \((x < 1)\)
 - The top level wins
- Balanced \((x = 1)\)
 - Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n) = n + 5T(n/8)$
- $T(n) = n + 9T(n/8)$
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$
Strassen's Algorithm

Multiply 2 x 2 Matrices:
\[
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
=
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h
\end{bmatrix}
\]

Where:
\[
\begin{align*}
p_1 &= (b + d)(f + g) \\
p_2 &= (c + d)e \\
p_3 &= a(g - h) \\
p_4 &= d(f - e) \\
p_5 &= (a - b)h \\
p_6 &= (c - d)(e + g) \\
p_7 &= (b - d)(f + h)
\end{align*}
\]

\[
\begin{align*}
r &= p_1 + p_4 - p_5 + p_7 \\
s &= p_3 + p_5 \\
t &= p_2 + p_5 \\
u &= p_1 + p_3 - p_2 + p_7
\end{align*}
\]
Recurrence for Strassen’s Algorithms

- \(T(n) = 7 \ T(n/2) + cn^2 \)
- What is the runtime?
BFPRRT Recurrence

- $T(n) \leq T(3n/4) + T(n/5) + 20n$

What bound do you expect?