CSE 421
Algorithms
Autumn 2016
Lecture 10
Minimum Spanning Trees
Dijkstra’s Algorithm
Implementation and Runtime

\[
S = \{\}; \quad d[s] = 0; \quad d[v] = \text{infinity for } v \neq s
\]

While \(S \neq V \)

Choose \(v \) in \(V - S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[
d[w] = \min(d[w], d[v] + c(v, w))
\]

\vspace{1cm}

HEAP OPERATIONS

\(n \) Extract Mins
\(m \) Heap Updates

Edge costs are assumed to be non-negative
Shortest Paths

• Negative Cost Edges
 – Dijkstra’s algorithm assumes positive cost edges
 – For some applications, negative cost edges make sense
 – Shortest path not well defined if a graph has a negative cost cycle
Negative Cost Edge Preview

• Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
• Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).
Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path
Compute the bottleneck shortest paths
Dijkstra’s Algorithm for Bottleneck Shortest Paths

S = {}; d[s] = negative infinity; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

\[d[w] = \min(d[w], \max(d[v], c(v, w))) \]
Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy algorithms
• Provide proofs that the algorithms work
Minimum Spanning Tree
Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph
Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal’s algorithm
Label the edges in order of insertion
Greedy Algorithm 3
Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm
Label the edges in order of removal
Dijkstra’s Algorithm
for Minimum Spanning Trees

S = {}; \ d[s] = 0; \ d[v] = \text{infinity for } v \neq s

While S \neq V

Choose v in V-S with minimum d[v]
Add v to S
For each \ w \text{ in the neighborhood of } v
\ d[w] = \text{min}(d[w], c(v, w))
Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph
Why do the greedy algorithms work?

• For simplicity, assume all edge costs are distinct
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$

• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

• Suppose \(T \) is a spanning tree that does not contain \(e \)
• Add \(e \) to \(T \), this creates a cycle
• The cycle must have some edge \(e_1 = (u_1, v_1) \) with \(u_1 \) in \(S \) and \(v_1 \) in \(V-S \)

\[T_1 = T - \{e_1\} + \{e\} \]
• is a spanning tree with lower cost
• Hence, \(T \) is not a minimum spanning tree