Last Week – Greedy Algorithms

• Task scheduling to minimize maximum lateness
 – Interchange lemma

• Farthest in the future algorithm for optimal caching
 – Discard element whose first occurrence is last in the sequence

This week

• Topics
 – Dijkstra’s Algorithm (Section 4.4)
 – Wednesday: Shortest Paths / Minimum Spanning Trees
 – Friday: Minimum Spanning Trees

• Reading
 – 4.4, 4.5, 4.7, 4.8

Announcement

• Collaboration Policy
 – Discussing problems with other students is okay
 – Write ups must be done independently
 – Acknowledge people you work with

Single Source Shortest Path Problem

• Given a graph and a start vertex s
 – Determine distance of every vertex from s
 – Identify shortest paths to each vertex
 • Express concisely as a “shortest paths tree”
 • Each vertex has a pointer to a predecessor on shortest path
Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t.

WHY?

Dijkstra’s Algorithm

$S = \emptyset; \quad d[s] = 0; \quad d[v] = \infty$ for $v \neq s$

While $S \neq V$

Choose v in $V - S$ with minimum $d[v]$

Add v to S

For each w in the neighborhood of v

$d[w] = \min(d[w], d[v] + c(v, w))$

Simulate Dijkstra’s algorithm (starting from s) on the graph

<table>
<thead>
<tr>
<th>Round</th>
<th>Vertices Added</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Who was Dijkstra?

- What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

- **Edsger Wybe Dijkstra** was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Dijkstra’s Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance
Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let v be a vertex in $V-S$ with minimum $d[v]$
- Let P_v be a path of length $d[v]$, with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x,y)
 - $P = P_{xu} + c(x,y) + P_{yv}$
 - $\text{Len}(P_{xu}) + c(x,y) >= d[y]$
 - $\text{Len}(P_{yv}) >= 0$
 - $\text{Len}(P) >= d[y] + 0 >= d[v]$

Negative Cost Edges

- Draw a small example a negative cost edge and show that Dijkstra’s algorithm fails on this example

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

How do you adapt Dijkstra’s algorithm to handle bottleneck distances

- Does the correctness proof still apply?