Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today’s problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching
 - Subsequence testing

Announcements

- Midterm exam, October 31, 2016
 - In class, closed book

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

 - Can I get all my work turned in on time?
 - If I can’t get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

 - Goal minimize maximum lateness
 - Lateness = $f_i - d_i$, if $f_i >= d_i$
Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)
- A schedule has an inversion if job \(j \) is scheduled before \(i \) where \(j > i \)
- The schedule \(A \) computed by the greedy algorithm has no inversions.
- Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)

Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!
- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof
Lemma
• If there is an inversion \(i, j\), there is a pair of adjacent jobs \(i', j'\) which form an inversion

Interchange argument
• Suppose there is a pair of jobs \(i\) and \(j\), with \(d_i \leq d_j\), and \(j\) scheduled immediately before \(i\). Interchanging \(i\) and \(j\) does not increase the maximum lateness.

Proof by Bubble Sort

Real Proof
• There is an optimal schedule with no inversions and no idle time.
• Let \(O\) be an optimal schedule \(k\) inversions, we construct a new optimal schedule with \(k-1\) inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm

Result
• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling
• How is the model unrealistic?
Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

- A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note – it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .
Subsequence Testing

• Is $a_1a_2...a_n$ a subsequence of $b_1b_2...b_n$?
 – e.g. S,A,G,E is a subsequence of S,T,U,A,R,T,R,E,G,E,S

Greedy Algorithm for Subsequence Testing