Announcements

• Reading
 – Start on Chapter 4
Stable Matching Results

• Averages of 5 runs
• Much better for M than W
• Why is it better for M?

• What is the growth of m-rank and w-rank as a function of n?

<table>
<thead>
<tr>
<th>n</th>
<th>m-rank</th>
<th>w-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5.102</td>
<td>98.048</td>
</tr>
<tr>
<td>500</td>
<td>7.52</td>
<td>66.952</td>
</tr>
<tr>
<td>500</td>
<td>8.57</td>
<td>58.176</td>
</tr>
<tr>
<td>500</td>
<td>6.322</td>
<td>75.874</td>
</tr>
<tr>
<td>500</td>
<td>5.25</td>
<td>90.726</td>
</tr>
<tr>
<td>500</td>
<td>6.5528</td>
<td>77.9552</td>
</tr>
<tr>
<td>1000</td>
<td>6.796</td>
<td>146.936</td>
</tr>
<tr>
<td>1000</td>
<td>6.502</td>
<td>154.714</td>
</tr>
<tr>
<td>1000</td>
<td>7.14</td>
<td>133.538</td>
</tr>
<tr>
<td>1000</td>
<td>7.444</td>
<td>128.961</td>
</tr>
<tr>
<td>1000</td>
<td>7.364</td>
<td>137.852</td>
</tr>
<tr>
<td>1000</td>
<td>7.0492</td>
<td>140.4002</td>
</tr>
<tr>
<td>2000</td>
<td>7.826</td>
<td>257.7955</td>
</tr>
<tr>
<td>2000</td>
<td>7.505</td>
<td>263.781</td>
</tr>
<tr>
<td>2000</td>
<td>11.4245</td>
<td>175.1735</td>
</tr>
<tr>
<td>2000</td>
<td>7.1665</td>
<td>274.7615</td>
</tr>
<tr>
<td>2000</td>
<td>7.547</td>
<td>261.602</td>
</tr>
<tr>
<td>2000</td>
<td>8.2938</td>
<td>246.6227</td>
</tr>
</tbody>
</table>
Graph Theory

- **G = (V, E)**
 - V: vertices, |V| = n
 - E: edges, |E| = m

- **Undirected graphs**
 - Edges sets of two vertices \{u, v\}

- **Directed graphs**
 - Edges ordered pairs (u, v)

- **Many other flavors**
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- **Path**: v₁, v₂, ..., vₖ, with (vᵢ, vᵢ₊₁) in E
 - Simple Path
 - Cycle
 - Simple Cycle

- **Neighborhood**
 - N(v)

- **Distance**

- **Connectivity**
 - Undirected
 - Directed (strong connectivity)

- **Trees**
 - Rooted
 - Unrooted
Last Lecture

• Bipartite Graphs: two-colorable graphs
• Breadth First Search algorithm for testing two-colorability
 – Two-colorable iff no odd length cycle
 – BFS has cross edge iff graph has odd cycle
Graph Search

• Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)
Breadth First Search

• All edges go between vertices on the same layer or adjacent layers
Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges
Connected Components

- Undirected Graphs
Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v’s component
- While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s SCC in $O(n+m)$ time
Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph
If a graph has a cycle, there is no topological sort

• Consider the first vertex on the cycle in the topological sort
• It must have an incoming edge
Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all outgoing edges
Details for $O(n+m)$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each