Announcements

• Reading
 – Chapter 3 (Mostly review)
 – Start on Chapter 4
Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges
- Undirected graphs
 - Edges sets of two vertices $\{u, v\}$
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

• Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – $N(v)$

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted
Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v = t) then path found
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

• A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2

• A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles
Lemma 1

- If a graph contains an odd cycle, it is not bipartite
Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Graph Search

- Data structure for next vertex to visit determines search order
Graph search

Breadth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Dequeue}(S) \]

if \(u \) is unvisited

visit \(u \)

foreach \(v \) in \(N(u) \)

\[\text{Enqueue}(S, v) \]

Depth First Search

\[S = \{s\} \]

while S is not empty

\[u = \text{Pop}(S) \]

if \(u \) is unvisited

visit \(u \)

foreach \(v \) in \(N(u) \)

\[\text{Push}(S, v) \]
Breadth First Search

• All edges go between vertices on the same layer or adjacent layers
Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges
Connected Components

• Undirected Graphs
Computing Connected Components in $O(n+m)$ time

• A search algorithm from a vertex v can find all vertices in v’s component

• While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

• But it’s tricky!
• Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time
Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks.
Find a topological order for the following graph
If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

![Graph diagram](image-url)
Lemma: If a graph is acyclic, it has a vertex with in degree 0

• Proof:
 – Pick a vertex \(v_1 \), if it has in-degree 0 then done
 – If not, let \((v_2, v_1)\) be an edge, if \(v_2 \) has in-degree 0 then done
 – If not, let \((v_3, v_2)\) be an edge . . .
 – If this process continues for more than \(n \) steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

- Output vertex v
- Delete the vertex v and all outgoing edges
Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0
• Each vertex keeps track of its in-degree
• Update in-degrees and list when edges are removed
• m edge removals at O(1) cost each