CSE 421
Algorithms
Richard Anderson
Autumn 2016
Lecture 4

Announcements
• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4
• Homework Guidelines
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for your algorithm
 – Justify that the algorithm satisfies the runtime bound
 – You may lose points for style

What does it mean for an algorithm to be efficient?

Definitions of efficiency
• Fast in practice
• Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency
• An algorithm is efficient if it has a polynomial run time
• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – $T(n)$: maximum run time for all problems of size at most n

Polynomial Time
• Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?
- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity
- Suppose you have an algorithm which takes n! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problem sizes:
 12 14 16 18 20

Ignoring constant factors
- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?
- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?
- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates
- $T(n)$ is $O(f(n))$ \[T : Z^+ \to R^+ \]
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
- $T(n)$ is $O(f(n))$ will be written as: $T(n) = O(f(n))$
 - Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n) = O(f(n))$ if there exist c, n_0, such that for $n > n_0$,

$T(n) < c f(n)$

Order the following functions in increasing order by their growth rate

a) $n \log_4 n$

b) $2n^2 + 10n$

c) $2^{n/100}$

d) $1000n + \log_8 n$

e) n^{100}

f) 3^n

g) $1000 \log_{10} n$

h) $n^{1/2}$

Lower bounds

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $c > 0$ such that $T(n) > cf(n)$ for all $n > n_0$
- Warning: definitions of Ω vary

- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems

- If $\lim (f(n) / g(n)) = c$ for $c > 0$ then $f(n) = \Theta(g(n))$

- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$

- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n) + g(n)$ is $O(h(n))$

Ordering growth rates

- For $b > 1$ and $x > 0$
 - $\log_b n$ is $O(n^x)$

- For $r > 1$ and $d > 0$
 - n^d is $O(r^n)$

Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges
- Undirected graphs
 - Edges sets of two vertices (u, v)
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

• Path: v_1, v_2, \ldots, v_k, with $(v_i, v_{i+1}) \in E$
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – $N(v)$

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted

Graph search

• Find a path from s to t

\[
S = \{s\}
\]
\[
\text{while } S \text{ is not empty}
\]
\[
\begin{align*}
 u &= \text{Select}(S) \\
 \text{visit } u \\
 \text{foreach } v \text{ in } N(u) \\
 &\quad \text{if } v \text{ is unvisited} \\
 &\quad\quad \text{Add}(S, v) \\
 &\quad\quad \text{Pred}[v] = u \\
 &\quad\quad \text{if } (v = t) \text{ then path found}
\end{align*}
\]

Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .

Key observation

• All edges go between vertices on the same layer or adjacent layers