Announcements

• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4

• Homework Guidelines
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for you algorithm
 • Justify that the algorithm satisfies the runtime bound
 – You may lose points for style
What does it mean for an algorithm to be efficient?
Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm
Polynomial time efficiency

• An algorithm is efficient if it has a polynomial run time
• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – $T(n)$: maximum run time for all problems of size at most n
Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?

• Generally, polynomial time seems to capture the algorithms which are efficient in practice

• The class of polynomial time algorithms has many good, mathematical properties
Polynomial vs. Exponential Complexity

• Suppose you have an algorithm which takes $n!$ steps on a problem of size n

• If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

 12 14 16 18 20
Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award
Why ignore constant factors?

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight
Why emphasize growth rates?

• The algorithm with the lower growth rate will be faster for all but a finite number of cases
• Performance is most important for larger problem size
• As memory prices continue to fall, bigger problem sizes become feasible
• Improving growth rate often requires new techniques
Formalizing growth rates

- $T(n)$ is $O(f(n))$ \[T : \mathbb{Z}^+ \to \mathbb{R}^+\]
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$

- $T(n)$ is $O(f(n))$ will be written as:
 $T(n) = O(f(n))$
 - Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
Order the following functions in increasing order by their growth rate

a) \(n \log^4 n \)
b) \(2n^2 + 10n \)
c) \(2^{n/100} \)
d) \(1000n + \log^8 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log^{10} n \)
h) \(n^{1/2} \)
Lower bounds

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$

- **Warning:** definitions of Ω vary

- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$
Useful Theorems

• If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then
 \(f(n) = \Theta(g(n)) \)

• If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) \) is \(O(h(n)) \)

• If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) + g(n) \) is \(O(h(n)) \)
Ordering growth rates

• For $b > 1$ and $x > 0$
 – $\log^b n$ is $O(n^x)$

• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$
Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges
- Undirected graphs
 - Edges sets of two vertices $\{u, v\}$
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

• Path: \(v_1, v_2, \ldots, v_k \), with \((v_i, v_{i+1})\) in \(E \)
 – Simple Path
 – Cycle
 – Simple Cycle

• Neighborhood
 – \(N(v) \)

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted
Graph search

• Find a path from s to t

$S = \{s\}$

while S is not empty

$u = \text{Select}(S)$

visit u

foreach v in $N(u)$

if v is unvisited

$\text{Add}(S, v)$

$\text{Pred}[v] = u$

if $(v = t)$ then path found
Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers