Five Problems
CSE 421
Richard Anderson
Autumn 2016, Lecture 3

Announcements

- Course website
 /courses.cs.washington.edu/courses/cse421/16au/
- Office hours
 - Richard Anderson
 - Monday, 2:30 pm - 3:30 pm, CSE 582
 - Wednesday, 3:30 pm - 3:30 pm, CSE 582
 - Deepali Aneja
 - Monday, 5:30 pm - 6:30 pm, CSE 220
 - Max Horton
 - Monday, 4:30 pm - 5:30 pm, CSE 220
 - Tuesday, 2:00 pm - 3:00 pm, CSE 218
 - Ben Jones
 - Monday, 4:30 pm - 5:30 pm, CSE 218
 - Friday, 2:30 pm - 3:30 pm, CSE 220

Theory of Algorithms

- What is expertise?
- How do experts differ from novices?

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location

What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall:
 \((s_1, f_1), (s_2, f_2), \ldots\)

- Find a set of requests as large as possible with no overlap
What is the largest solution?

Greedy Algorithm
• Test elements one at a time if they can be members of the solution
• If an element is not ruled out by earlier choices, add it to the solution
• Many possible choices for ordering (length, start time, end time)
• For this problem, considering the jobs by increasing end time works

Suppose we add values?
• \((s_i, f_i, v_i)\), start time, finish time, payment
• Maximize value of elements in the solution

Greedy Algorithms
• Earliest finish time

Dynamic Programming
• Requests \(R_1, R_2, R_3, \ldots\)
• Assume requests are in increasing order of finish time \((f_1 < f_2 < f_3 \ldots)\)
• \(\text{Opt}_i\) is the maximum value solution of \(\{R_1, R_2, \ldots, R_i\}\) containing \(R_i\)
• \(\text{Opt}_i = \text{Max}\{ j \mid f_j < s_i \} [\text{Opt}_j + v_i]\)

Matching
• Given a bipartite graph \(G=(U,V,E)\), find a subset of the edges \(M\) of maximum size with no common endpoints.
• Application:
 – \(U\): Professors
 – \(V\): Courses
 – \((u,v)\) in \(E\) if Prof. \(u\) can teach course \(v\)
Find a maximum matching

Augmenting Path Algorithm

Reduction to network flow
- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

Maximum Independent Set
- Given an undirected graph $G = (V,E)$, find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 8
Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins

Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald’s

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points
Summary

• Scheduling
• Weighted Scheduling
• Bipartite Matching
• Maximum Independent Set
• Competitive Scheduling