CSE 421: Midterm Review

Larry Ruzzo
Complexity, I

Asymptotic Analysis
Best/average/worst cases
Upper/Lower Bounds
Big O, Theta, Omega
definitions; intuition
Analysis methods
loops
recurrence relations
common data structures, subroutines
& specialized arguments, e.g. “look at every edge twice”
Graph Algorithms

Graphs

- Representation (edge list/adjacency matrix)
- Breadth/depth first search
- Connected components
- Shortest paths/bipartitiveness/2-Colorability
- DAGS and topological ordering
- DFS/articulation points/biconnected components
Design Paradigms

Greedy
emphasis on correctness arguments, e.g. stay ahead, structural characterizations, exchange arguments

Divide & Conquer
recursive solution, superlinear work, balanced subproblems, recurrence relations, solutions, Master Theorem

Dynamic Programming
recursive solution, redundant subproblems, few do all in careful order and tabulate; OPT function (usually far superior to “memoization”)
Examples

Greedy

- Interval Scheduling Problems (3)
- Huffman Codes
- Examples where greedy fails (stamps/change, scheduling, knap, RNA, …)
Examples

Divide & Conquer

Merge sort
Counting Inversions
Closest pair of points
Integer multiplication (Karatsuba)
Matrix multiplication (Strassen)
Powering
Examples

Dynamic programming
 Fibonacci
 Making change/Stamp, Knapsack
 Weighted Interval Scheduling
 RNA
 String Alignment
Midterm Friday, 2/14/2015

Closed book, 1 page of notes
(8.5x 11, 2 sides, handwritten)
(no bluebook needed; scratch paper may be handy; calculators unnecessary)

All up through start of “Dynamic Prog”
assigned reading up through Ch 6.2; slides
homework & solutions
Some Typical Exam Questions

Give $O(\cdot)$ bound on $17n^*(n-3+\log n)$
Give $O(\cdot)$ bound on some code `{for i=1 to n {for j ...}}`
True/False: If X is $O(n^2)$, then it’s rarely more than $n^3 + 14$ steps.
Explain why a given greedy alg is/isn’t correct
Give a run time recurrence for a recursive alg, or
Solve a simple recurrence
For any of the algs we’ve studied
 - Simulate it on given input
 - Explain its runtime analysis or analyze a similar alg
 - Explain/give counterexample for failure of a modified version
Give an alg for a new problem/analyze it/argue correctness