6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

How?
- Divide & Conquer?
- Greedy?
Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Exercises: by “density” = weight per unit time? Other ideas?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

"p" suggesting (last possible) "predecessor"

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Dynamic Programming: Binary Choice

Notation. \(\text{OPT}(j) = \text{value of optimal solution to the problem consisting of job requests 1, 2, ..., j.} \)

- **Case 1:** Optimum selects job \(j \).
 - can't use incompatible jobs \(\{ p(j) + 1, p(j) + 2, ..., j - 1 \} \)
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)

- **Case 2:** Optimum does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(j-1 \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + \text{OPT}(p(j)), \text{OPT}(j-1) \} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

Input: n, s₁,...,sₙ, f₁,...,fₙ, v₁,...,vₙ

Sort jobs by finish times so that f₁ ≤ f₂ ≤ ... ≤ fₙ.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vⱼ + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems \Rightarrow exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = p(2) = 0; \quad p(j) = j-2, \ j \geq 3
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Iterative-Compute-Opt {
 OPT[0] = 0
 for \(j = 1 \) to \(n \)
 OPT[j] = max(\(v_j + OPT[p(j)] \), OPT[j-1])
 }

Output \(OPT[n] \)

Claim: \(OPT[j] \) is value of optimal solution for jobs 1..j

Timing: Easy. Main loop is \(O(n) \); sorting is \(O(n \log n) \); what about \(p(j) \)?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)

\[
\begin{array}{c|c|c|c}
 j & v_j & p_j & opt_j \\
\hline
 0 & - & - & 0 \\
 1 & 0 & & \\
 2 & 0 & & \\
 3 & 0 & & \\
 4 & 1 & & \\
 5 & 0 & & \\
 6 & 2 & & \\
 7 & 3 & & \\
 8 & 5 & & \\
\end{array}
\]
Weighted Interval Scheduling Example

Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

\[p(j) = \text{largest } i < j \text{ s.t. job } i \text{ is compatible with } j. \]

Exercise: try other concrete examples:
If all \(v_j = 1 \): greedy by finish time \(\rightarrow 1, 4, 8 \)
what if \(v_2 > v_1 \)?, but \(v_1 + v_4 < v_2 \)?
v2 > v1 + v4, but \(v_2 + v_6 < v_1 + v_7 \), say? etc.

\[
\begin{array}{ccccccc}
 j & p_j & v_j & \max(v_j + \text{opt}[p(j), \text{opt}[j-1]]) &= & \text{opt}[j] \\
0 & - & - & - & = & 0 \\
1 & 0 & 2 & \max(2+0, 0) = & 2 \\
2 & 0 & 3 & \max(3+0, 2) = & 3 \\
3 & 0 & 1 & \max(1+0, 3) = & 3 \\
4 & 1 & 6 & \max(6+2, 3) = & 8 \\
5 & 0 & 9 & \max(9+0, 8) = & 9 \\
6 & 2 & 7 & \max(7+3, 9) = & 10 \\
7 & 3 & 2 & \max(2+3, 10) = & 10 \\
8 & 5 & ? & \max(\?+9, 10) = & ?
\end{array}
\]

Exercise: What values of \(v_8 \) cause it to be in/excluded from \(\text{opt} \)?
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing – “traceback”

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (v_j + OPT[p(j)] > OPT[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

- # of recursive calls ≤ n ⇒ O(n).
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the 2^n possible subsets might be relevant)

Don’t believe me? Think about the analogous problem for weighted *rectangles* instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.
6.4 Knapsack Problem
Knapsack problem.

- Given \(n \) objects and a “knapsack.”
- Item \(i \) weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: maximize total value without overfilling knapsack

Ex: \{ 3, 4 \} has value 40.

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).

Ex: \{ 5, 2, 1 \} achieves only value = 35 \(\Rightarrow \) greedy not optimal.

[NB greedy is optimal for “fractional knapsack”: take \#5 + 4/6 of \#4]
Dynamic Programming: False Start

Def. $OPT(i) = \text{max profit subset of items 1, \ldots, i}$.

- **Case 1**: OPT does not select item i.
 - OPT selects best of $\{ 1, 2, \ldots, i-1 \}$

- **Case 2**: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) = \text{max profit subset of items 1, \ldots, i with weight limit } w$

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using weight limit w

- **Case 2:** OPT selects item i.
 - new weight limit $= w - w_i$
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$
Knapsack Problem: Bottom-Up

\(\text{OPT}(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

Input: \(n, w_1, \ldots, w_N, v_1, \ldots, v_N \)

```plaintext
for \( w = 0 \) to \( W \)
    \( \text{OPT}[0, w] = 0 \)

for \( i = 1 \) to \( n \)
    for \( w = 1 \) to \( W \)
        if \( (w_i > w) \)
            \( \text{OPT}[i, w] = \text{OPT}[i-1, w] \)
        else
            \( \text{OPT}[i, w] = \text{max} \ \{\text{OPT}[i-1, w], v_i + \text{OPT}[i-1, w-w_i]\} \)

return \( \text{OPT}[n, W] \)
```

(Correctness: prove it by induction on \(i \) & \(w \).)
Knapsack Algorithm

\[\text{OPT: \{4, 3\}} \]
\[\text{value} = 22 + 18 = 40 \]

\[\text{if} \ (w_i > w) \]
\[\text{OPT}[i, w] = \text{OPT}[i-1, w] \]
\[\text{else} \]
\[\text{OPT}[i, w] = \max\{\text{OPT}[i-1,w],v_i+\text{OPT}[i-1,w-w_i]\} \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11
Knapsack Problem: Running Time

Running time. $\Theta(nW)$.

- **Not** polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution (i.e., satisfies weight-limit constraint) that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]