CSE 421: Intro Algorithms

Dynamic Programming, I
Intro: Fibonacci & Stamps

W. L. Ruzzo
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 Weighted interval scheduling
 String Alignment
 RNA Structure prediction
 Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution.

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original.

E.g. Mergesort, Quicksort, Binary Search, Karatsuba.

Typically, speeds up a polynomial time algorithm.
Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

\[
0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad 89 \quad 144 \quad 233 \quad \ldots
\]

Recursive algorithm:

\[
\text{FiboR}(n)
\]

\[
\text{if } n = 0 \text{ then return}(0)
\]
\[
\text{else if } n = 1 \text{ then return}(1)
\]
\[
\text{else return}(ext{FiboR}(n-1)+\text{FiboR}(n-2))
\]

Note:

Exponential \uparrow: $F(n) \approx \Phi^n/\sqrt{5}$, $\Phi = (1+\sqrt{5})/2 \approx 1.618\ldots$
Call tree - start

```
F (6)
  /   \
F (5)     F (4)
 /       /     \   
F (4)   F (3)   F (2)
 /  \
F (3) F (2)
 /     |
F (2) F (1)
 /     |  \
F (1) F (0)  
\       1    0
```

Full call tree

many duplicates ⇒ exponential time!

F(n) ≈ Φ^n/√5
Two Alternative Fixes

Memoization ("Caching")
Compute on demand, but don’t re-compute:
 Save answers from all recursive calls
 Before a call, test whether answer saved

Dynamic Programming (not memoized)
Pre-compute, don’t re-compute:
 Recursion become iteration (top-down → bottom-up)
 Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs
Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i > 1
F[0] ← 0
F[1] ← 1

FiboMemo(n):
 if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
 }
 return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):

\[
\begin{align*}
F[0] &\leftarrow 0 \\
F[1] &\leftarrow 1 \\
\text{for } i = 2 \text{ to } n \text{ do} \\
\quad F[i] &\leftarrow F[i-1]+F[i-2] \\
\text{end} \\
\text{return}(F[n])
\end{align*}
\]

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*
Parameters of these recursive calls *anticipated*

The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” – more below, e.g. slide 19
Example: Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination
Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
# of 5¢ stamps	# of 4¢ stamps	# of 1¢ stamps	total number
5 | 0 | 2 | 7
4 | 1 | 3 | 8
3 | 3 | 0 | 6

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

\[
\begin{align*}
\text{for } a &= 0, \ldots, N \{ \\
\text{for } b &= 0, \ldots, N \{ \\
\text{for } c &= 0, \ldots, N \{ \\
\text{if } (5a+4b+c == N \&\& a+b+c \text{ is new min}) \\
\{ \text{retain (a,b,c);} \}\}\}
\end{align*}
\]

output retained triple;

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are *opt sol for* \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
OPT(i) = \min \left\{ \begin{array}{ll}
0 & i=0 \\
1+OPT(i-5) & i\geq5 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-1) & i\geq1 \\
\end{array} \right.
\]

Claim: \(OPT(i) = \) min number of stamps totaling \(i \cdot \phi \)

Pf: induction on \(i \).
New Idea: Recursion

\[\text{opt}(i) = \min \begin{cases}
0 & i = 0 \\
1 + \text{opt}(i-5) & i \geq 5 \\
1 + \text{opt}(i-4) & i \geq 4 \\
1 + \text{opt}(i-1) & i \geq 1
\end{cases} \]

Time: \(> 3^{N/5} \)
Another New Idea:
Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

for \(i = 0, \ldots, N \) do

\[
\text{OPT}[i] = \min \left\{ \begin{array}{ll}
0 & i = 0 \\
1 + \text{OPT}[i-5] & i \geq 5 \\
1 + \text{OPT}[i-4] & i \geq 4 \\
1 + \text{OPT}[i-1] & i \geq 1 \\
\end{array} \right.
\]

Time: \(O(N) \)
Finding *How Many* Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT[i]</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

\[1 + \text{Min}(3, 1, 3) = 2\]
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT[i]</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \min(3, 1, 3) = 2 \]

\[
\text{OPT}[i] = \min \begin{cases}
0 & i = 0 \\
1 + \text{OPT}[i-5] & i \geq 5 \\
1 + \text{OPT}[i-4] & i \geq 4 \\
1 + \text{OPT}[i-1] & i \geq 1
\end{cases}
\]
Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

TraceBack(i):
 if i == 0 then return;
 for d in {1, 4, 5} do
 if OPT[i] == 1 + OPT[i - d]
 then break;
 print d;
 TraceBack(i - d);

\[
OPT(i) = \min \begin{cases}
0 & i=0 \\
1+OPT(i-5) & i\geq 5 \\
1+OPT(i-4) & i\geq 4 \\
1+OPT(i-1) & i\geq 1 \\
\end{cases}
\]
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – c·2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general (i.e., when denominations and total are both part of the input). See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways