18

16

14

12

10

o N By a o0

CSE 421 Midterm Scores

17
15
14
11
8
| ||
70 75 80 85 90 95

Mean 83
Sigma 11

CSE 421 Algorithms

Sequence Alignment

Sequence Alignment

Goal: position characters in strings so
they “best” line up with one another

We can do this via Dynamic Programming

What is an alignment?

Compare two strings and see how similar they are
Maximize the # of chars in a string that line up

ATGTTAT vs ATCGTAC

What is an alignment?

Compare two strings and see how similar they are
Maximize the # of chars in a string that line up

ATGTTAT vs ATCGTAC

A T - G T T A T -

ST

matches mismatches

Why do we align?

Biology
Most widely used comp. tools in biology
New sequences always compared to databases

Similar sequences often have similar
origin and/or function

Other
spell check, diff, svn/git/..., plagiarism, ...

Terminology

string \ suffix
ordered list of { A consecutive

letters TATRARA G‘ letters from
- < back
/
prefix \ substring
consecutive consecutive
letters from subsequence letters from
front any ordered, anywhere
nonconsecutive
letters,

l.e. AAA , TAG

Formal definition of an alignment

a c gctag aclz——clgc’lcg
c/at\gt - Ccatg-—-— t -

An alignment of strings S, T is represented as a
pair of strings S’, T" with gaps “-" s.t.

1. |S’| =T, and (IS| = “length of S”)

2. Removing gaps leaves S, T

(Note that this is a definition for a general alignment, not optimal.)

Scoring an arbitrary alignment

Want to determine whether an alignment is “good”
or “bad” so we define a cost function

score of
(mis)aligning = g(x,y) = m.atCh 2
chars x & y mismatch -1

Total value/score of an alignment
2 o(S'[il, T'[il)

Optimal alignment
Max alignment score of all poss. alignments

Scoring an arbitrary alignment

-1 +2 -1 -1 +2 -1 +2 -1

Score = +1

_ | match 2
(X, y) {mismatch -1

Can we use
Dynamic Programming?

1. ldentify subproblems

We can reuse the solution to smaller substrings
(prefixes in this case)

2. Argue that we have optimal substructure

Appending two optimal alignments should also
be optimally aligned (some may change at the
interface)

Arguing for Optimal Substructure

Assume strings S & T are optimally
aligned except for the last character

3 options for the last character:

1. match
2. mismatch

3. mismatch

- S
- S[1]

- T

1]

[J]

& T[j] aligned
& " - aligned
& "= aligned

* Never align "=" & "=";i.e.o0("=-", "=")<<0

“Recipe” for using DP for
problems like this

1. Argue for optimal substructure (M)

2. Find a recursive relation for subproblem costs

Use (1), find all subproblems that might contribute to
an optimal cost

3. Implement a bottom-up use of (2) to fill in a
table of subproblem costs

4. Write a recursive algorithm using the table from
(3) to construct actual solutions to subproblems
(“traceback”)

Setting up Optimal Alignment
in O(n?) via DP

Input: strings S, T

IS[=n, |[T|=m
Output: optimal alignment score

- Generate the score first and then trace
backwards to recover the actual alignment

13

Setting up Optimal Alignment
in O(n?) via DP

Compute optimal alignment of all combinations of
prefixes, & store in a table for the future

T>

sy, - ACGT .. T
- Start UL, nothing aligned
A End LR, w/ optimal score
C
G
T Move diagonally - align chars
/ Move vert/horiz - introduce gap
;

V(i,j) = optimal alignment score of
S[1].S[i]and T[1]..T[]]
l.e. all possible prefixesof Sand T 14

Computing the table: Base Case

Column:

SV o S aligns with nothing in T
: Elﬂ

all mismatches

A

c V(i,0) = Zo(S[k], “-”)
c &1 = i*o(S[k], “-”)
T Row:

r B T aligns with nothing in S

all mismatches
V(0,j) = za(“-”, T[k])
= j*o(“-”, T[k])

15

T->
Sv

- @ O >

~

Computing the table: General Case

- ACG T . e
At any given point in

0 1 2 -3 4 .

1 computing the table, we can

:2 choose whether it's best to

3 Align 2 characters

-4

Take a gap

16

Computing the table: General Case
V(i-1, j-1) + o(S[il, T3 N match
*=V(i,j)=max~[V(i—1, j) + o(S[i], “-”) 1‘ mismatch

V(i, j-1) + o(*“-”, T[j]) <& mismatch

! !

Cost of ops so far ~ Cost of next op
(match/mismatch)

- A C G T ... T

2 | -3 4 n

—4 O O >
N W N~ ©

Need these 3 positions
filled in to determine *

17

(X, y) =‘[match 2

mismatch -1
Example: base case

C A T G T

Sv =0 1 2 3 4 5

i*o(S[k], “-”)
V(,3) = j*a(“-",,TIk])

mismatch -1
Example: general step

C A T G T

(X, y) =‘[m_atc:h 2

T>
Sv =0 1 2 3 4 5

0.0 -1 -2 -3 -4 -5
-1

O @& O P
W N
G N

AN
1
AN

19

(X, y) =‘[m_atch 2

mismatch -1
Example: general step

C A T G T
T>

SV =0 1 2 3 4 5
=0 0 | - -4 | -5

A 1.

cC 2

[- P =3

V(i-1, j-1) + o(S[il, T[i) N\
V<i,J)=max{v<i-1, i)+ o(s[il, <) 4
V(iJ j'l) + O(“_”J T[J]) <

20

(X, y) =‘[m_atc:h 2

mismatch -1
Example: general step

C A T G T
T>

SV =0 1 2 3 4 5
=0 0 | - -4 | -5

: 1I

C 2

(S P =2
V(@,1) + o(S[1], T[2]) N

\/(i,j)zmax{V(Q,Z) + o(S[1], “-”) 1‘

V(1,1) + o(“-”, T[2]) <«

21

(X, y) =‘[m_atc:h 2

mismatch -1

Example: general step

C A T G T

T>

SV =0 1 2 3 4 5
=00 1/ -2 -3/ -4 -5

A - 1“

cC 2

G 2 1

-1 + 2 =1, match N\

V(i,j)=max~[—2 -1 = -3

-1 -1 -2

22

_ | match 2
(%, y) _{mismatch -1

Example: completed table

C AT G T

T->
Sv =0 1 2 3 4 5
=0/ 0 1 -2 -3 -4

T 1110 -1

O & O >
A W N
AW N
'L ©

o

N

N

= NN O

Time = O(mn) = O(|S|*|T|)

23

How do we find the alignment itself?
Traceback

Trace LR to UL following
highest score path

Cango N 4 <«

Multiple optimal

alignments are possible A
We can break ties ¢
arbitrarily G
Corresponding ¢

Alignment:

CATGT

-ACGC

Mismatch = -1

= 2

Match

Example

21

Complexity Notes

Time = O(mn), (value and alignment)
Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n))
(KT section 6.7)

Significance of Alignments

Is “42” a good score”? Compared to what?

Easier to compare when using standardized scoring
functions, esp. for DNA

Usual approach: compared to a specific “null
model”, such as “random sequences”

Interesting stats problem; much is known

Variations

Local Alignment

Preceding gives global alignment, i.e. full
length of both strings;

Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent spaces cost 10 x one space?

Many others
Similarly fast DP algs often possible

Summary: Alignment

Functionally similar proteins/DNA often have recognizably
similar sequences even after eons of divergent evolution

Ability to find/compare/experiment with “same” sequence
In other organisms is a huge win

Surprisingly simple scoring works well in practice: score
positions separately & add, usually w/ fancier gap model
like affine

Simple dynamic programming algorithms can find optimal
alignments under these assumptions in poly time
(product of sequence lengths)

This, and heuristic approximations to it like BLAST, are
workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to

a) identify the subproblems (usually repeated/overlapping)

b) solve them in a careful order so all small ones solved
before they are needed by the bigger ones, and

c) build table with solutions to the smaller ones so bigger
ones just need to do table lookups (no recursion, despite

recursive formulation implicit in (a))

d) Implicitly, optimal solution to whole problem devolves to
optimal solutions to subproblems

A really important algorithm design paradigm

